Description: A more general form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hbg.1 | |- ( ph -> A. x ps ) | |
| hbg.2 | |- ( ch -> A. x th ) | ||
| Assertion | hbimg | |- ( ( ps -> ch ) -> A. x ( ph -> th ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbg.1 | |- ( ph -> A. x ps ) | |
| 2 | hbg.2 | |- ( ch -> A. x th ) | |
| 3 | 1 | ax-gen | |- A. x ( ph -> A. x ps ) | 
| 4 | hbimtg | |- ( ( A. x ( ph -> A. x ps ) /\ ( ch -> A. x th ) ) -> ( ( ps -> ch ) -> A. x ( ph -> th ) ) ) | |
| 5 | 3 2 4 | mp2an | |- ( ( ps -> ch ) -> A. x ( ph -> th ) ) |