Metamath Proof Explorer


Theorem hbimg

Description: A more general form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Hypotheses hbg.1 φxψ
hbg.2 χxθ
Assertion hbimg ψχxφθ

Proof

Step Hyp Ref Expression
1 hbg.1 φxψ
2 hbg.2 χxθ
3 1 ax-gen xφxψ
4 hbimtg xφxψχxθψχxφθ
5 3 2 4 mp2an ψχxφθ