Description: The class of all hereditarily finite sets is transitive. (Contributed by Scott Fenton, 16-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hftr | |- Tr Hf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 | |- ( Tr Hf <-> A. x A. y ( ( x e. y /\ y e. Hf ) -> x e. Hf ) ) |
|
2 | hfelhf | |- ( ( x e. y /\ y e. Hf ) -> x e. Hf ) |
|
3 | 2 | ax-gen | |- A. y ( ( x e. y /\ y e. Hf ) -> x e. Hf ) |
4 | 1 3 | mpgbir | |- Tr Hf |