Description: The class of all hereditarily finite sets is transitive. (Contributed by Scott Fenton, 16-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hftr | ⊢ Tr Hf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 | ⊢ ( Tr Hf ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Hf ) → 𝑥 ∈ Hf ) ) | |
2 | hfelhf | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Hf ) → 𝑥 ∈ Hf ) | |
3 | 2 | ax-gen | ⊢ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Hf ) → 𝑥 ∈ Hf ) |
4 | 1 3 | mpgbir | ⊢ Tr Hf |