Metamath Proof Explorer


Theorem hftr

Description: The class of all hereditarily finite sets is transitive. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hftr Tr Hf

Proof

Step Hyp Ref Expression
1 dftr2 ( Tr Hf ↔ ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦 ∈ Hf ) → 𝑥 ∈ Hf ) )
2 hfelhf ( ( 𝑥𝑦𝑦 ∈ Hf ) → 𝑥 ∈ Hf )
3 2 ax-gen 𝑦 ( ( 𝑥𝑦𝑦 ∈ Hf ) → 𝑥 ∈ Hf )
4 1 3 mpgbir Tr Hf