Description: The class of all hereditarily finite sets is transitive. (Contributed by Scott Fenton, 16-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hftr | ⊢ Tr Hf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 | ⊢ ( Tr Hf ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Hf ) → 𝑥 ∈ Hf ) ) | |
| 2 | hfelhf | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Hf ) → 𝑥 ∈ Hf ) | |
| 3 | 2 | ax-gen | ⊢ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Hf ) → 𝑥 ∈ Hf ) |
| 4 | 1 3 | mpgbir | ⊢ Tr Hf |