Metamath Proof Explorer


Theorem hfelhf

Description: Any member of an HF set is itself an HF set. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfelhf ( ( 𝐴𝐵𝐵 ∈ Hf ) → 𝐴 ∈ Hf )

Proof

Step Hyp Ref Expression
1 rankelg ( ( 𝐵 ∈ Hf ∧ 𝐴𝐵 ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) )
2 1 ancoms ( ( 𝐴𝐵𝐵 ∈ Hf ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) )
3 elhf2g ( 𝐵 ∈ Hf → ( 𝐵 ∈ Hf ↔ ( rank ‘ 𝐵 ) ∈ ω ) )
4 3 ibi ( 𝐵 ∈ Hf → ( rank ‘ 𝐵 ) ∈ ω )
5 elnn ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( rank ‘ 𝐴 ) ∈ ω )
6 elhf2g ( 𝐴𝐵 → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
7 5 6 syl5ibr ( 𝐴𝐵 → ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ∧ ( rank ‘ 𝐵 ) ∈ ω ) → 𝐴 ∈ Hf ) )
8 7 expcomd ( 𝐴𝐵 → ( ( rank ‘ 𝐵 ) ∈ ω → ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ Hf ) ) )
9 8 imp ( ( 𝐴𝐵 ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ Hf ) )
10 4 9 sylan2 ( ( 𝐴𝐵𝐵 ∈ Hf ) → ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ Hf ) )
11 2 10 mpd ( ( 𝐴𝐵𝐵 ∈ Hf ) → 𝐴 ∈ Hf )