Step |
Hyp |
Ref |
Expression |
1 |
|
rankelg |
⊢ ( ( 𝐵 ∈ Hf ∧ 𝐴 ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) |
3 |
|
elhf2g |
⊢ ( 𝐵 ∈ Hf → ( 𝐵 ∈ Hf ↔ ( rank ‘ 𝐵 ) ∈ ω ) ) |
4 |
3
|
ibi |
⊢ ( 𝐵 ∈ Hf → ( rank ‘ 𝐵 ) ∈ ω ) |
5 |
|
elnn |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( rank ‘ 𝐴 ) ∈ ω ) |
6 |
|
elhf2g |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
7 |
5 6
|
syl5ibr |
⊢ ( 𝐴 ∈ 𝐵 → ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ∧ ( rank ‘ 𝐵 ) ∈ ω ) → 𝐴 ∈ Hf ) ) |
8 |
7
|
expcomd |
⊢ ( 𝐴 ∈ 𝐵 → ( ( rank ‘ 𝐵 ) ∈ ω → ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ Hf ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ Hf ) ) |
10 |
4 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ Hf ) ) |
11 |
2 10
|
mpd |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝐴 ∈ Hf ) |