Metamath Proof Explorer


Theorem elhf2g

Description: Hereditarily finiteness via rank. Closed form of elhf2 . (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion elhf2g ( 𝐴𝑉 → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ Hf ↔ 𝐴 ∈ Hf ) )
2 fveq2 ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) )
3 2 eleq1d ( 𝑥 = 𝐴 → ( ( rank ‘ 𝑥 ) ∈ ω ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
4 vex 𝑥 ∈ V
5 4 elhf2 ( 𝑥 ∈ Hf ↔ ( rank ‘ 𝑥 ) ∈ ω )
6 1 3 5 vtoclbg ( 𝐴𝑉 → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )