Description: Hereditarily finiteness via rank. Closed form of elhf2 . (Contributed by Scott Fenton, 15-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | elhf2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ Hf ↔ 𝐴 ∈ Hf ) ) | |
2 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) | |
3 | 2 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ 𝑥 ) ∈ ω ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
4 | vex | ⊢ 𝑥 ∈ V | |
5 | 4 | elhf2 | ⊢ ( 𝑥 ∈ Hf ↔ ( rank ‘ 𝑥 ) ∈ ω ) |
6 | 1 3 5 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |