Metamath Proof Explorer


Theorem elhf2g

Description: Hereditarily finiteness via rank. Closed form of elhf2 . (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion elhf2g A V A Hf rank A ω

Proof

Step Hyp Ref Expression
1 eleq1 x = A x Hf A Hf
2 fveq2 x = A rank x = rank A
3 2 eleq1d x = A rank x ω rank A ω
4 vex x V
5 4 elhf2 x Hf rank x ω
6 1 3 5 vtoclbg A V A Hf rank A ω