Metamath Proof Explorer


Theorem elhf2g

Description: Hereditarily finiteness via rank. Closed form of elhf2 . (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion elhf2g
|- ( A e. V -> ( A e. Hf <-> ( rank ` A ) e. _om ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( x = A -> ( x e. Hf <-> A e. Hf ) )
2 fveq2
 |-  ( x = A -> ( rank ` x ) = ( rank ` A ) )
3 2 eleq1d
 |-  ( x = A -> ( ( rank ` x ) e. _om <-> ( rank ` A ) e. _om ) )
4 vex
 |-  x e. _V
5 4 elhf2
 |-  ( x e. Hf <-> ( rank ` x ) e. _om )
6 1 3 5 vtoclbg
 |-  ( A e. V -> ( A e. Hf <-> ( rank ` A ) e. _om ) )