| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elhf2.1 |
|- A e. _V |
| 2 |
|
elhf |
|- ( A e. Hf <-> E. x e. _om A e. ( R1 ` x ) ) |
| 3 |
|
omon |
|- ( _om e. On \/ _om = On ) |
| 4 |
|
nnon |
|- ( x e. _om -> x e. On ) |
| 5 |
1
|
rankr1a |
|- ( x e. On -> ( A e. ( R1 ` x ) <-> ( rank ` A ) e. x ) ) |
| 6 |
4 5
|
syl |
|- ( x e. _om -> ( A e. ( R1 ` x ) <-> ( rank ` A ) e. x ) ) |
| 7 |
6
|
adantl |
|- ( ( _om e. On /\ x e. _om ) -> ( A e. ( R1 ` x ) <-> ( rank ` A ) e. x ) ) |
| 8 |
|
elnn |
|- ( ( ( rank ` A ) e. x /\ x e. _om ) -> ( rank ` A ) e. _om ) |
| 9 |
8
|
expcom |
|- ( x e. _om -> ( ( rank ` A ) e. x -> ( rank ` A ) e. _om ) ) |
| 10 |
9
|
adantl |
|- ( ( _om e. On /\ x e. _om ) -> ( ( rank ` A ) e. x -> ( rank ` A ) e. _om ) ) |
| 11 |
7 10
|
sylbid |
|- ( ( _om e. On /\ x e. _om ) -> ( A e. ( R1 ` x ) -> ( rank ` A ) e. _om ) ) |
| 12 |
11
|
rexlimdva |
|- ( _om e. On -> ( E. x e. _om A e. ( R1 ` x ) -> ( rank ` A ) e. _om ) ) |
| 13 |
|
peano2 |
|- ( ( rank ` A ) e. _om -> suc ( rank ` A ) e. _om ) |
| 14 |
13
|
adantr |
|- ( ( ( rank ` A ) e. _om /\ _om e. On ) -> suc ( rank ` A ) e. _om ) |
| 15 |
|
r1rankid |
|- ( A e. _V -> A C_ ( R1 ` ( rank ` A ) ) ) |
| 16 |
1 15
|
mp1i |
|- ( ( ( rank ` A ) e. _om /\ _om e. On ) -> A C_ ( R1 ` ( rank ` A ) ) ) |
| 17 |
1
|
elpw |
|- ( A e. ~P ( R1 ` ( rank ` A ) ) <-> A C_ ( R1 ` ( rank ` A ) ) ) |
| 18 |
16 17
|
sylibr |
|- ( ( ( rank ` A ) e. _om /\ _om e. On ) -> A e. ~P ( R1 ` ( rank ` A ) ) ) |
| 19 |
|
nnon |
|- ( ( rank ` A ) e. _om -> ( rank ` A ) e. On ) |
| 20 |
|
r1suc |
|- ( ( rank ` A ) e. On -> ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) ) |
| 21 |
19 20
|
syl |
|- ( ( rank ` A ) e. _om -> ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) ) |
| 22 |
21
|
adantr |
|- ( ( ( rank ` A ) e. _om /\ _om e. On ) -> ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) ) |
| 23 |
18 22
|
eleqtrrd |
|- ( ( ( rank ` A ) e. _om /\ _om e. On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
| 24 |
|
fveq2 |
|- ( x = suc ( rank ` A ) -> ( R1 ` x ) = ( R1 ` suc ( rank ` A ) ) ) |
| 25 |
24
|
eleq2d |
|- ( x = suc ( rank ` A ) -> ( A e. ( R1 ` x ) <-> A e. ( R1 ` suc ( rank ` A ) ) ) ) |
| 26 |
25
|
rspcev |
|- ( ( suc ( rank ` A ) e. _om /\ A e. ( R1 ` suc ( rank ` A ) ) ) -> E. x e. _om A e. ( R1 ` x ) ) |
| 27 |
14 23 26
|
syl2anc |
|- ( ( ( rank ` A ) e. _om /\ _om e. On ) -> E. x e. _om A e. ( R1 ` x ) ) |
| 28 |
27
|
expcom |
|- ( _om e. On -> ( ( rank ` A ) e. _om -> E. x e. _om A e. ( R1 ` x ) ) ) |
| 29 |
12 28
|
impbid |
|- ( _om e. On -> ( E. x e. _om A e. ( R1 ` x ) <-> ( rank ` A ) e. _om ) ) |
| 30 |
1
|
tz9.13 |
|- E. x e. On A e. ( R1 ` x ) |
| 31 |
|
rankon |
|- ( rank ` A ) e. On |
| 32 |
30 31
|
2th |
|- ( E. x e. On A e. ( R1 ` x ) <-> ( rank ` A ) e. On ) |
| 33 |
|
rexeq |
|- ( _om = On -> ( E. x e. _om A e. ( R1 ` x ) <-> E. x e. On A e. ( R1 ` x ) ) ) |
| 34 |
|
eleq2 |
|- ( _om = On -> ( ( rank ` A ) e. _om <-> ( rank ` A ) e. On ) ) |
| 35 |
33 34
|
bibi12d |
|- ( _om = On -> ( ( E. x e. _om A e. ( R1 ` x ) <-> ( rank ` A ) e. _om ) <-> ( E. x e. On A e. ( R1 ` x ) <-> ( rank ` A ) e. On ) ) ) |
| 36 |
32 35
|
mpbiri |
|- ( _om = On -> ( E. x e. _om A e. ( R1 ` x ) <-> ( rank ` A ) e. _om ) ) |
| 37 |
29 36
|
jaoi |
|- ( ( _om e. On \/ _om = On ) -> ( E. x e. _om A e. ( R1 ` x ) <-> ( rank ` A ) e. _om ) ) |
| 38 |
3 37
|
ax-mp |
|- ( E. x e. _om A e. ( R1 ` x ) <-> ( rank ` A ) e. _om ) |
| 39 |
2 38
|
bitri |
|- ( A e. Hf <-> ( rank ` A ) e. _om ) |