Metamath Proof Explorer


Theorem elhf

Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015)

Ref Expression
Assertion elhf
|- ( A e. Hf <-> E. x e. _om A e. ( R1 ` x ) )

Proof

Step Hyp Ref Expression
1 df-hf
 |-  Hf = U. ( R1 " _om )
2 1 eleq2i
 |-  ( A e. Hf <-> A e. U. ( R1 " _om ) )
3 r111
 |-  R1 : On -1-1-> _V
4 f1fun
 |-  ( R1 : On -1-1-> _V -> Fun R1 )
5 eluniima
 |-  ( Fun R1 -> ( A e. U. ( R1 " _om ) <-> E. x e. _om A e. ( R1 ` x ) ) )
6 3 4 5 mp2b
 |-  ( A e. U. ( R1 " _om ) <-> E. x e. _om A e. ( R1 ` x ) )
7 2 6 bitri
 |-  ( A e. Hf <-> E. x e. _om A e. ( R1 ` x ) )