Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | elhf | |- ( A e. Hf <-> E. x e. _om A e. ( R1 ` x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hf | |- Hf = U. ( R1 " _om ) |
|
2 | 1 | eleq2i | |- ( A e. Hf <-> A e. U. ( R1 " _om ) ) |
3 | r111 | |- R1 : On -1-1-> _V |
|
4 | f1fun | |- ( R1 : On -1-1-> _V -> Fun R1 ) |
|
5 | eluniima | |- ( Fun R1 -> ( A e. U. ( R1 " _om ) <-> E. x e. _om A e. ( R1 ` x ) ) ) |
|
6 | 3 4 5 | mp2b | |- ( A e. U. ( R1 " _om ) <-> E. x e. _om A e. ( R1 ` x ) ) |
7 | 2 6 | bitri | |- ( A e. Hf <-> E. x e. _om A e. ( R1 ` x ) ) |