Metamath Proof Explorer


Theorem elhf

Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015)

Ref Expression
Assertion elhf A Hf x ω A R1 x

Proof

Step Hyp Ref Expression
1 df-hf Hf = R1 ω
2 1 eleq2i A Hf A R1 ω
3 r111 R1 : On 1-1 V
4 f1fun R1 : On 1-1 V Fun R1
5 eluniima Fun R1 A R1 ω x ω A R1 x
6 3 4 5 mp2b A R1 ω x ω A R1 x
7 2 6 bitri A Hf x ω A R1 x