Metamath Proof Explorer


Theorem elhf

Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015)

Ref Expression
Assertion elhf AHfxωAR1x

Proof

Step Hyp Ref Expression
1 df-hf Hf=R1ω
2 1 eleq2i AHfAR1ω
3 r111 R1:On1-1V
4 f1fun R1:On1-1VFunR1
5 eluniima FunR1AR1ωxωAR1x
6 3 4 5 mp2b AR1ωxωAR1x
7 2 6 bitri AHfxωAR1x