Metamath Proof Explorer


Theorem eluniima

Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006)

Ref Expression
Assertion eluniima FunFBFAxABFx

Proof

Step Hyp Ref Expression
1 funiunfv FunFxAFx=FA
2 1 eleq2d FunFBxAFxBFA
3 eliun BxAFxxABFx
4 2 3 bitr3di FunFBFAxABFx