Metamath Proof Explorer


Theorem eluniima

Description: Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006)

Ref Expression
Assertion eluniima ( Fun 𝐹 → ( 𝐵 ( 𝐹𝐴 ) ↔ ∃ 𝑥𝐴 𝐵 ∈ ( 𝐹𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 funiunfv ( Fun 𝐹 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
2 1 eleq2d ( Fun 𝐹 → ( 𝐵 𝑥𝐴 ( 𝐹𝑥 ) ↔ 𝐵 ( 𝐹𝐴 ) ) )
3 eliun ( 𝐵 𝑥𝐴 ( 𝐹𝑥 ) ↔ ∃ 𝑥𝐴 𝐵 ∈ ( 𝐹𝑥 ) )
4 2 3 bitr3di ( Fun 𝐹 → ( 𝐵 ( 𝐹𝐴 ) ↔ ∃ 𝑥𝐴 𝐵 ∈ ( 𝐹𝑥 ) ) )