Step |
Hyp |
Ref |
Expression |
1 |
|
elhf2.1 |
⊢ 𝐴 ∈ V |
2 |
|
elhf |
⊢ ( 𝐴 ∈ Hf ↔ ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
3 |
|
omon |
⊢ ( ω ∈ On ∨ ω = On ) |
4 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
5 |
1
|
rankr1a |
⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝑥 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝑥 ) ) |
7 |
6
|
adantl |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝑥 ) ) |
8 |
|
elnn |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ 𝑥 ∧ 𝑥 ∈ ω ) → ( rank ‘ 𝐴 ) ∈ ω ) |
9 |
8
|
expcom |
⊢ ( 𝑥 ∈ ω → ( ( rank ‘ 𝐴 ) ∈ 𝑥 → ( rank ‘ 𝐴 ) ∈ ω ) ) |
10 |
9
|
adantl |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ ω ) → ( ( rank ‘ 𝐴 ) ∈ 𝑥 → ( rank ‘ 𝐴 ) ∈ ω ) ) |
11 |
7 10
|
sylbid |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → ( rank ‘ 𝐴 ) ∈ ω ) ) |
12 |
11
|
rexlimdva |
⊢ ( ω ∈ On → ( ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → ( rank ‘ 𝐴 ) ∈ ω ) ) |
13 |
|
peano2 |
⊢ ( ( rank ‘ 𝐴 ) ∈ ω → suc ( rank ‘ 𝐴 ) ∈ ω ) |
14 |
13
|
adantr |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ω ∈ On ) → suc ( rank ‘ 𝐴 ) ∈ ω ) |
15 |
|
r1rankid |
⊢ ( 𝐴 ∈ V → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
16 |
1 15
|
mp1i |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ω ∈ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
17 |
1
|
elpw |
⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
18 |
16 17
|
sylibr |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ω ∈ On ) → 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
19 |
|
nnon |
⊢ ( ( rank ‘ 𝐴 ) ∈ ω → ( rank ‘ 𝐴 ) ∈ On ) |
20 |
|
r1suc |
⊢ ( ( rank ‘ 𝐴 ) ∈ On → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( rank ‘ 𝐴 ) ∈ ω → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ω ∈ On ) → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
23 |
18 22
|
eleqtrrd |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ω ∈ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑥 = suc ( rank ‘ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
25 |
24
|
eleq2d |
⊢ ( 𝑥 = suc ( rank ‘ 𝐴 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) |
26 |
25
|
rspcev |
⊢ ( ( suc ( rank ‘ 𝐴 ) ∈ ω ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) → ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
27 |
14 23 26
|
syl2anc |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ω ∈ On ) → ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
28 |
27
|
expcom |
⊢ ( ω ∈ On → ( ( rank ‘ 𝐴 ) ∈ ω → ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
29 |
12 28
|
impbid |
⊢ ( ω ∈ On → ( ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
30 |
1
|
tz9.13 |
⊢ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) |
31 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
32 |
30 31
|
2th |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ On ) |
33 |
|
rexeq |
⊢ ( ω = On → ( ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
34 |
|
eleq2 |
⊢ ( ω = On → ( ( rank ‘ 𝐴 ) ∈ ω ↔ ( rank ‘ 𝐴 ) ∈ On ) ) |
35 |
33 34
|
bibi12d |
⊢ ( ω = On → ( ( ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ ω ) ↔ ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ On ) ) ) |
36 |
32 35
|
mpbiri |
⊢ ( ω = On → ( ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
37 |
29 36
|
jaoi |
⊢ ( ( ω ∈ On ∨ ω = On ) → ( ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
38 |
3 37
|
ax-mp |
⊢ ( ∃ 𝑥 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ∈ ω ) |
39 |
2 38
|
bitri |
⊢ ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) |