| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano1 |
|- (/) e. _om |
| 2 |
|
peano2 |
|- ( (/) e. _om -> suc (/) e. _om ) |
| 3 |
1 2
|
ax-mp |
|- suc (/) e. _om |
| 4 |
|
0elpw |
|- (/) e. ~P ( R1 ` (/) ) |
| 5 |
|
0elon |
|- (/) e. On |
| 6 |
|
r1suc |
|- ( (/) e. On -> ( R1 ` suc (/) ) = ~P ( R1 ` (/) ) ) |
| 7 |
5 6
|
ax-mp |
|- ( R1 ` suc (/) ) = ~P ( R1 ` (/) ) |
| 8 |
4 7
|
eleqtrri |
|- (/) e. ( R1 ` suc (/) ) |
| 9 |
|
fveq2 |
|- ( x = suc (/) -> ( R1 ` x ) = ( R1 ` suc (/) ) ) |
| 10 |
9
|
eleq2d |
|- ( x = suc (/) -> ( (/) e. ( R1 ` x ) <-> (/) e. ( R1 ` suc (/) ) ) ) |
| 11 |
10
|
rspcev |
|- ( ( suc (/) e. _om /\ (/) e. ( R1 ` suc (/) ) ) -> E. x e. _om (/) e. ( R1 ` x ) ) |
| 12 |
3 8 11
|
mp2an |
|- E. x e. _om (/) e. ( R1 ` x ) |
| 13 |
|
elhf |
|- ( (/) e. Hf <-> E. x e. _om (/) e. ( R1 ` x ) ) |
| 14 |
12 13
|
mpbir |
|- (/) e. Hf |