Metamath Proof Explorer


Theorem 0hf

Description: The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015)

Ref Expression
Assertion 0hf Hf

Proof

Step Hyp Ref Expression
1 peano1 ω
2 peano2 ω suc ω
3 1 2 ax-mp suc ω
4 0elpw 𝒫 R1
5 0elon On
6 r1suc On R1 suc = 𝒫 R1
7 5 6 ax-mp R1 suc = 𝒫 R1
8 4 7 eleqtrri R1 suc
9 fveq2 x = suc R1 x = R1 suc
10 9 eleq2d x = suc R1 x R1 suc
11 10 rspcev suc ω R1 suc x ω R1 x
12 3 8 11 mp2an x ω R1 x
13 elhf Hf x ω R1 x
14 12 13 mpbir Hf