Metamath Proof Explorer


Theorem 0hf

Description: The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015)

Ref Expression
Assertion 0hf Hf

Proof

Step Hyp Ref Expression
1 peano1 ω
2 peano2 ωsucω
3 1 2 ax-mp sucω
4 0elpw 𝒫R1
5 0elon On
6 r1suc OnR1suc=𝒫R1
7 5 6 ax-mp R1suc=𝒫R1
8 4 7 eleqtrri R1suc
9 fveq2 x=sucR1x=R1suc
10 9 eleq2d x=sucR1xR1suc
11 10 rspcev sucωR1sucxωR1x
12 3 8 11 mp2an xωR1x
13 elhf HfxωR1x
14 12 13 mpbir Hf