Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Hereditarily Finite Sets
0hf
Next ⟩
hfun
Metamath Proof Explorer
Ascii
Unicode
Theorem
0hf
Description:
The empty set is a hereditarily finite set.
(Contributed by
Scott Fenton
, 9-Jul-2015)
Ref
Expression
Assertion
0hf
⊢
∅
∈
Hf
Proof
Step
Hyp
Ref
Expression
1
peano1
⊢
∅
∈
ω
2
peano2
⊢
∅
∈
ω
→
suc
⁡
∅
∈
ω
3
1
2
ax-mp
⊢
suc
⁡
∅
∈
ω
4
0elpw
⊢
∅
∈
𝒫
R
1
⁡
∅
5
0elon
⊢
∅
∈
On
6
r1suc
⊢
∅
∈
On
→
R
1
⁡
suc
⁡
∅
=
𝒫
R
1
⁡
∅
7
5
6
ax-mp
⊢
R
1
⁡
suc
⁡
∅
=
𝒫
R
1
⁡
∅
8
4
7
eleqtrri
⊢
∅
∈
R
1
⁡
suc
⁡
∅
9
fveq2
⊢
x
=
suc
⁡
∅
→
R
1
⁡
x
=
R
1
⁡
suc
⁡
∅
10
9
eleq2d
⊢
x
=
suc
⁡
∅
→
∅
∈
R
1
⁡
x
↔
∅
∈
R
1
⁡
suc
⁡
∅
11
10
rspcev
⊢
suc
⁡
∅
∈
ω
∧
∅
∈
R
1
⁡
suc
⁡
∅
→
∃
x
∈
ω
∅
∈
R
1
⁡
x
12
3
8
11
mp2an
⊢
∃
x
∈
ω
∅
∈
R
1
⁡
x
13
elhf
⊢
∅
∈
Hf
↔
∃
x
∈
ω
∅
∈
R
1
⁡
x
14
12
13
mpbir
⊢
∅
∈
Hf