Metamath Proof Explorer


Theorem hfun

Description: The union of two HF sets is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfun A Hf B Hf A B Hf

Proof

Step Hyp Ref Expression
1 rankung A Hf B Hf rank A B = rank A rank B
2 elhf2g A Hf A Hf rank A ω
3 2 ibi A Hf rank A ω
4 elhf2g B Hf B Hf rank B ω
5 4 ibi B Hf rank B ω
6 eleq1a rank B ω rank A rank B = rank B rank A rank B ω
7 6 adantl rank A ω rank B ω rank A rank B = rank B rank A rank B ω
8 uncom rank B rank A = rank A rank B
9 8 eqeq1i rank B rank A = rank A rank A rank B = rank A
10 9 biimpi rank B rank A = rank A rank A rank B = rank A
11 10 eleq1d rank B rank A = rank A rank A rank B ω rank A ω
12 11 biimprcd rank A ω rank B rank A = rank A rank A rank B ω
13 12 adantr rank A ω rank B ω rank B rank A = rank A rank A rank B ω
14 nnord rank A ω Ord rank A
15 nnord rank B ω Ord rank B
16 ordtri2or2 Ord rank A Ord rank B rank A rank B rank B rank A
17 14 15 16 syl2an rank A ω rank B ω rank A rank B rank B rank A
18 ssequn1 rank A rank B rank A rank B = rank B
19 ssequn1 rank B rank A rank B rank A = rank A
20 18 19 orbi12i rank A rank B rank B rank A rank A rank B = rank B rank B rank A = rank A
21 17 20 sylib rank A ω rank B ω rank A rank B = rank B rank B rank A = rank A
22 7 13 21 mpjaod rank A ω rank B ω rank A rank B ω
23 3 5 22 syl2an A Hf B Hf rank A rank B ω
24 1 23 eqeltrd A Hf B Hf rank A B ω
25 unexg A Hf B Hf A B V
26 elhf2g A B V A B Hf rank A B ω
27 25 26 syl A Hf B Hf A B Hf rank A B ω
28 24 27 mpbird A Hf B Hf A B Hf