Metamath Proof Explorer


Theorem hfun

Description: The union of two HF sets is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfun AHfBHfABHf

Proof

Step Hyp Ref Expression
1 rankung AHfBHfrankAB=rankArankB
2 elhf2g AHfAHfrankAω
3 2 ibi AHfrankAω
4 elhf2g BHfBHfrankBω
5 4 ibi BHfrankBω
6 eleq1a rankBωrankArankB=rankBrankArankBω
7 6 adantl rankAωrankBωrankArankB=rankBrankArankBω
8 uncom rankBrankA=rankArankB
9 8 eqeq1i rankBrankA=rankArankArankB=rankA
10 9 biimpi rankBrankA=rankArankArankB=rankA
11 10 eleq1d rankBrankA=rankArankArankBωrankAω
12 11 biimprcd rankAωrankBrankA=rankArankArankBω
13 12 adantr rankAωrankBωrankBrankA=rankArankArankBω
14 nnord rankAωOrdrankA
15 nnord rankBωOrdrankB
16 ordtri2or2 OrdrankAOrdrankBrankArankBrankBrankA
17 14 15 16 syl2an rankAωrankBωrankArankBrankBrankA
18 ssequn1 rankArankBrankArankB=rankB
19 ssequn1 rankBrankArankBrankA=rankA
20 18 19 orbi12i rankArankBrankBrankArankArankB=rankBrankBrankA=rankA
21 17 20 sylib rankAωrankBωrankArankB=rankBrankBrankA=rankA
22 7 13 21 mpjaod rankAωrankBωrankArankBω
23 3 5 22 syl2an AHfBHfrankArankBω
24 1 23 eqeltrd AHfBHfrankABω
25 unexg AHfBHfABV
26 elhf2g ABVABHfrankABω
27 25 26 syl AHfBHfABHfrankABω
28 24 27 mpbird AHfBHfABHf