Description: The union of two HF sets is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hfun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankung | |
|
2 | elhf2g | |
|
3 | 2 | ibi | |
4 | elhf2g | |
|
5 | 4 | ibi | |
6 | eleq1a | |
|
7 | 6 | adantl | |
8 | uncom | |
|
9 | 8 | eqeq1i | |
10 | 9 | biimpi | |
11 | 10 | eleq1d | |
12 | 11 | biimprcd | |
13 | 12 | adantr | |
14 | nnord | |
|
15 | nnord | |
|
16 | ordtri2or2 | |
|
17 | 14 15 16 | syl2an | |
18 | ssequn1 | |
|
19 | ssequn1 | |
|
20 | 18 19 | orbi12i | |
21 | 17 20 | sylib | |
22 | 7 13 21 | mpjaod | |
23 | 3 5 22 | syl2an | |
24 | 1 23 | eqeltrd | |
25 | unexg | |
|
26 | elhf2g | |
|
27 | 25 26 | syl | |
28 | 24 27 | mpbird | |