Step |
Hyp |
Ref |
Expression |
1 |
|
rankung |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
2 |
|
elhf2g |
⊢ ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
3 |
2
|
ibi |
⊢ ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω ) |
4 |
|
elhf2g |
⊢ ( 𝐵 ∈ Hf → ( 𝐵 ∈ Hf ↔ ( rank ‘ 𝐵 ) ∈ ω ) ) |
5 |
4
|
ibi |
⊢ ( 𝐵 ∈ Hf → ( rank ‘ 𝐵 ) ∈ ω ) |
6 |
|
eleq1a |
⊢ ( ( rank ‘ 𝐵 ) ∈ ω → ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( rank ‘ 𝐵 ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ω ) ) |
7 |
6
|
adantl |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( rank ‘ 𝐵 ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ω ) ) |
8 |
|
uncom |
⊢ ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
9 |
8
|
eqeq1i |
⊢ ( ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( rank ‘ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( rank ‘ 𝐴 ) ) |
10 |
9
|
biimpi |
⊢ ( ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( rank ‘ 𝐴 ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( rank ‘ 𝐴 ) ) |
11 |
10
|
eleq1d |
⊢ ( ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( rank ‘ 𝐴 ) → ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ω ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
12 |
11
|
biimprcd |
⊢ ( ( rank ‘ 𝐴 ) ∈ ω → ( ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( rank ‘ 𝐴 ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ω ) ) |
13 |
12
|
adantr |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( rank ‘ 𝐴 ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ω ) ) |
14 |
|
nnord |
⊢ ( ( rank ‘ 𝐴 ) ∈ ω → Ord ( rank ‘ 𝐴 ) ) |
15 |
|
nnord |
⊢ ( ( rank ‘ 𝐵 ) ∈ ω → Ord ( rank ‘ 𝐵 ) ) |
16 |
|
ordtri2or2 |
⊢ ( ( Ord ( rank ‘ 𝐴 ) ∧ Ord ( rank ‘ 𝐵 ) ) → ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐵 ) ∨ ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ) ) |
17 |
14 15 16
|
syl2an |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐵 ) ∨ ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ) ) |
18 |
|
ssequn1 |
⊢ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐵 ) ↔ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( rank ‘ 𝐵 ) ) |
19 |
|
ssequn1 |
⊢ ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ↔ ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( rank ‘ 𝐴 ) ) |
20 |
18 19
|
orbi12i |
⊢ ( ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐵 ) ∨ ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ) ↔ ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( rank ‘ 𝐵 ) ∨ ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( rank ‘ 𝐴 ) ) ) |
21 |
17 20
|
sylib |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( rank ‘ 𝐵 ) ∨ ( ( rank ‘ 𝐵 ) ∪ ( rank ‘ 𝐴 ) ) = ( rank ‘ 𝐴 ) ) ) |
22 |
7 13 21
|
mpjaod |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ω ∧ ( rank ‘ 𝐵 ) ∈ ω ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ω ) |
23 |
3 5 22
|
syl2an |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ω ) |
24 |
1 23
|
eqeltrd |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ω ) |
25 |
|
unexg |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
26 |
|
elhf2g |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( ( 𝐴 ∪ 𝐵 ) ∈ Hf ↔ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ω ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( ( 𝐴 ∪ 𝐵 ) ∈ Hf ↔ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ω ) ) |
28 |
24 27
|
mpbird |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 ∪ 𝐵 ) ∈ Hf ) |