Step |
Hyp |
Ref |
Expression |
1 |
|
uneq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝑦 ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ ( 𝑥 ∪ 𝑦 ) ) = ( rank ‘ ( 𝐴 ∪ 𝑦 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) |
4 |
3
|
uneq1d |
⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝑦 ) ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ↔ ( rank ‘ ( 𝐴 ∪ 𝑦 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝑦 ) ) ) ) |
6 |
|
uneq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( rank ‘ ( 𝐴 ∪ 𝑦 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝐵 ) ) |
9 |
8
|
uneq2d |
⊢ ( 𝑦 = 𝐵 → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝑦 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( rank ‘ ( 𝐴 ∪ 𝑦 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝑦 ) ) ↔ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
|
vex |
⊢ 𝑦 ∈ V |
13 |
11 12
|
rankun |
⊢ ( rank ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) |
14 |
5 10 13
|
vtocl2g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |