Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
2 |
1
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ { 𝑥 } ) = ( rank ‘ { 𝐴 } ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) |
4 |
|
suceq |
⊢ ( ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑥 = 𝐴 → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) ) |
6 |
2 5
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ { 𝑥 } ) = suc ( rank ‘ 𝑥 ) ↔ ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
7
|
ranksn |
⊢ ( rank ‘ { 𝑥 } ) = suc ( rank ‘ 𝑥 ) |
9 |
6 8
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) |