Metamath Proof Explorer


Theorem ranksng

Description: The rank of a singleton. Closed form of ranksn . (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion ranksng ( 𝐴𝑉 → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
2 1 fveq2d ( 𝑥 = 𝐴 → ( rank ‘ { 𝑥 } ) = ( rank ‘ { 𝐴 } ) )
3 fveq2 ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) )
4 suceq ( ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) )
5 3 4 syl ( 𝑥 = 𝐴 → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) )
6 2 5 eqeq12d ( 𝑥 = 𝐴 → ( ( rank ‘ { 𝑥 } ) = suc ( rank ‘ 𝑥 ) ↔ ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) )
7 vex 𝑥 ∈ V
8 7 ranksn ( rank ‘ { 𝑥 } ) = suc ( rank ‘ 𝑥 )
9 6 8 vtoclg ( 𝐴𝑉 → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) )