| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
| 2 |
1
|
fveq2d |
|- ( x = A -> ( rank ` { x } ) = ( rank ` { A } ) ) |
| 3 |
|
fveq2 |
|- ( x = A -> ( rank ` x ) = ( rank ` A ) ) |
| 4 |
|
suceq |
|- ( ( rank ` x ) = ( rank ` A ) -> suc ( rank ` x ) = suc ( rank ` A ) ) |
| 5 |
3 4
|
syl |
|- ( x = A -> suc ( rank ` x ) = suc ( rank ` A ) ) |
| 6 |
2 5
|
eqeq12d |
|- ( x = A -> ( ( rank ` { x } ) = suc ( rank ` x ) <-> ( rank ` { A } ) = suc ( rank ` A ) ) ) |
| 7 |
|
vex |
|- x e. _V |
| 8 |
7
|
ranksn |
|- ( rank ` { x } ) = suc ( rank ` x ) |
| 9 |
6 8
|
vtoclg |
|- ( A e. V -> ( rank ` { A } ) = suc ( rank ` A ) ) |