Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|- ( y = B -> ( A e. y <-> A e. B ) ) |
2 |
|
fveq2 |
|- ( y = B -> ( rank ` y ) = ( rank ` B ) ) |
3 |
2
|
eleq2d |
|- ( y = B -> ( ( rank ` A ) e. ( rank ` y ) <-> ( rank ` A ) e. ( rank ` B ) ) ) |
4 |
1 3
|
imbi12d |
|- ( y = B -> ( ( A e. y -> ( rank ` A ) e. ( rank ` y ) ) <-> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) ) ) |
5 |
|
vex |
|- y e. _V |
6 |
5
|
rankel |
|- ( A e. y -> ( rank ` A ) e. ( rank ` y ) ) |
7 |
4 6
|
vtoclg |
|- ( B e. V -> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) ) |
8 |
7
|
imp |
|- ( ( B e. V /\ A e. B ) -> ( rank ` A ) e. ( rank ` B ) ) |