Metamath Proof Explorer


Theorem rankelg

Description: The membership relation is inherited by the rank function. Closed form of rankel . (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion rankelg
|- ( ( B e. V /\ A e. B ) -> ( rank ` A ) e. ( rank ` B ) )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( y = B -> ( A e. y <-> A e. B ) )
2 fveq2
 |-  ( y = B -> ( rank ` y ) = ( rank ` B ) )
3 2 eleq2d
 |-  ( y = B -> ( ( rank ` A ) e. ( rank ` y ) <-> ( rank ` A ) e. ( rank ` B ) ) )
4 1 3 imbi12d
 |-  ( y = B -> ( ( A e. y -> ( rank ` A ) e. ( rank ` y ) ) <-> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) ) )
5 vex
 |-  y e. _V
6 5 rankel
 |-  ( A e. y -> ( rank ` A ) e. ( rank ` y ) )
7 4 6 vtoclg
 |-  ( B e. V -> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) )
8 7 imp
 |-  ( ( B e. V /\ A e. B ) -> ( rank ` A ) e. ( rank ` B ) )