Metamath Proof Explorer


Theorem ranksng

Description: The rank of a singleton. Closed form of ranksn . (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion ranksng A V rank A = suc rank A

Proof

Step Hyp Ref Expression
1 sneq x = A x = A
2 1 fveq2d x = A rank x = rank A
3 fveq2 x = A rank x = rank A
4 suceq rank x = rank A suc rank x = suc rank A
5 3 4 syl x = A suc rank x = suc rank A
6 2 5 eqeq12d x = A rank x = suc rank x rank A = suc rank A
7 vex x V
8 7 ranksn rank x = suc rank x
9 6 8 vtoclg A V rank A = suc rank A