Metamath Proof Explorer


Theorem rankung

Description: The rank of the union of two sets. Closed form of rankun . (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion rankung A V B W rank A B = rank A rank B

Proof

Step Hyp Ref Expression
1 uneq1 x = A x y = A y
2 1 fveq2d x = A rank x y = rank A y
3 fveq2 x = A rank x = rank A
4 3 uneq1d x = A rank x rank y = rank A rank y
5 2 4 eqeq12d x = A rank x y = rank x rank y rank A y = rank A rank y
6 uneq2 y = B A y = A B
7 6 fveq2d y = B rank A y = rank A B
8 fveq2 y = B rank y = rank B
9 8 uneq2d y = B rank A rank y = rank A rank B
10 7 9 eqeq12d y = B rank A y = rank A rank y rank A B = rank A rank B
11 vex x V
12 vex y V
13 11 12 rankun rank x y = rank x rank y
14 5 10 13 vtocl2g A V B W rank A B = rank A rank B