Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hfsn | ⊢ ( 𝐴 ∈ Hf → { 𝐴 } ∈ Hf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ranksng | ⊢ ( 𝐴 ∈ Hf → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) | |
| 2 | elhf2g | ⊢ ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) | |
| 3 | 2 | ibi | ⊢ ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω ) |
| 4 | peano2 | ⊢ ( ( rank ‘ 𝐴 ) ∈ ω → suc ( rank ‘ 𝐴 ) ∈ ω ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ Hf → suc ( rank ‘ 𝐴 ) ∈ ω ) |
| 6 | 1 5 | eqeltrd | ⊢ ( 𝐴 ∈ Hf → ( rank ‘ { 𝐴 } ) ∈ ω ) |
| 7 | snex | ⊢ { 𝐴 } ∈ V | |
| 8 | 7 | elhf2 | ⊢ ( { 𝐴 } ∈ Hf ↔ ( rank ‘ { 𝐴 } ) ∈ ω ) |
| 9 | 6 8 | sylibr | ⊢ ( 𝐴 ∈ Hf → { 𝐴 } ∈ Hf ) |