Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hfsn | ⊢ ( 𝐴 ∈ Hf → { 𝐴 } ∈ Hf ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ranksng | ⊢ ( 𝐴 ∈ Hf → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) | |
2 | elhf2g | ⊢ ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) | |
3 | 2 | ibi | ⊢ ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω ) |
4 | peano2 | ⊢ ( ( rank ‘ 𝐴 ) ∈ ω → suc ( rank ‘ 𝐴 ) ∈ ω ) | |
5 | 3 4 | syl | ⊢ ( 𝐴 ∈ Hf → suc ( rank ‘ 𝐴 ) ∈ ω ) |
6 | 1 5 | eqeltrd | ⊢ ( 𝐴 ∈ Hf → ( rank ‘ { 𝐴 } ) ∈ ω ) |
7 | snex | ⊢ { 𝐴 } ∈ V | |
8 | 7 | elhf2 | ⊢ ( { 𝐴 } ∈ Hf ↔ ( rank ‘ { 𝐴 } ) ∈ ω ) |
9 | 6 8 | sylibr | ⊢ ( 𝐴 ∈ Hf → { 𝐴 } ∈ Hf ) |