Metamath Proof Explorer


Theorem hfsn

Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfsn ( 𝐴 ∈ Hf → { 𝐴 } ∈ Hf )

Proof

Step Hyp Ref Expression
1 ranksng ( 𝐴 ∈ Hf → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) )
2 elhf2g ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
3 2 ibi ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω )
4 peano2 ( ( rank ‘ 𝐴 ) ∈ ω → suc ( rank ‘ 𝐴 ) ∈ ω )
5 3 4 syl ( 𝐴 ∈ Hf → suc ( rank ‘ 𝐴 ) ∈ ω )
6 1 5 eqeltrd ( 𝐴 ∈ Hf → ( rank ‘ { 𝐴 } ) ∈ ω )
7 snex { 𝐴 } ∈ V
8 7 elhf2 ( { 𝐴 } ∈ Hf ↔ ( rank ‘ { 𝐴 } ) ∈ ω )
9 6 8 sylibr ( 𝐴 ∈ Hf → { 𝐴 } ∈ Hf )