Metamath Proof Explorer


Theorem hfadj

Description: Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfadj ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf )

Proof

Step Hyp Ref Expression
1 hfsn ( 𝐵 ∈ Hf → { 𝐵 } ∈ Hf )
2 hfun ( ( 𝐴 ∈ Hf ∧ { 𝐵 } ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf )
3 1 2 sylan2 ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf )