Description: Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hfadj | ⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hfsn | ⊢ ( 𝐵 ∈ Hf → { 𝐵 } ∈ Hf ) | |
2 | hfun | ⊢ ( ( 𝐴 ∈ Hf ∧ { 𝐵 } ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf ) | |
3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf ) |