Description: Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hfadj | ⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hfsn | ⊢ ( 𝐵 ∈ Hf → { 𝐵 } ∈ Hf ) | |
| 2 | hfun | ⊢ ( ( 𝐴 ∈ Hf ∧ { 𝐵 } ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Hf ) |