Metamath Proof Explorer


Theorem hfadj

Description: Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfadj AHfBHfABHf

Proof

Step Hyp Ref Expression
1 hfsn BHfBHf
2 hfun AHfBHfABHf
3 1 2 sylan2 AHfBHfABHf