Metamath Proof Explorer


Theorem hfadj

Description: Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfadj A Hf B Hf A B Hf

Proof

Step Hyp Ref Expression
1 hfsn B Hf B Hf
2 hfun A Hf B Hf A B Hf
3 1 2 sylan2 A Hf B Hf A B Hf