Description: Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hfadj | |- ( ( A e. Hf /\ B e. Hf ) -> ( A u. { B } ) e. Hf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hfsn | |- ( B e. Hf -> { B } e. Hf ) |
|
| 2 | hfun | |- ( ( A e. Hf /\ { B } e. Hf ) -> ( A u. { B } ) e. Hf ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. Hf /\ B e. Hf ) -> ( A u. { B } ) e. Hf ) |