Description: Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hfadj | |- ( ( A e. Hf /\ B e. Hf ) -> ( A u. { B } ) e. Hf ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hfsn | |- ( B e. Hf -> { B } e. Hf ) |
|
2 | hfun | |- ( ( A e. Hf /\ { B } e. Hf ) -> ( A u. { B } ) e. Hf ) |
|
3 | 1 2 | sylan2 | |- ( ( A e. Hf /\ B e. Hf ) -> ( A u. { B } ) e. Hf ) |