Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hfsn | |- ( A e. Hf -> { A } e. Hf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ranksng | |- ( A e. Hf -> ( rank ` { A } ) = suc ( rank ` A ) ) |
|
| 2 | elhf2g | |- ( A e. Hf -> ( A e. Hf <-> ( rank ` A ) e. _om ) ) |
|
| 3 | 2 | ibi | |- ( A e. Hf -> ( rank ` A ) e. _om ) |
| 4 | peano2 | |- ( ( rank ` A ) e. _om -> suc ( rank ` A ) e. _om ) |
|
| 5 | 3 4 | syl | |- ( A e. Hf -> suc ( rank ` A ) e. _om ) |
| 6 | 1 5 | eqeltrd | |- ( A e. Hf -> ( rank ` { A } ) e. _om ) |
| 7 | snex | |- { A } e. _V |
|
| 8 | 7 | elhf2 | |- ( { A } e. Hf <-> ( rank ` { A } ) e. _om ) |
| 9 | 6 8 | sylibr | |- ( A e. Hf -> { A } e. Hf ) |