Metamath Proof Explorer


Theorem hfsn

Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfsn
|- ( A e. Hf -> { A } e. Hf )

Proof

Step Hyp Ref Expression
1 ranksng
 |-  ( A e. Hf -> ( rank ` { A } ) = suc ( rank ` A ) )
2 elhf2g
 |-  ( A e. Hf -> ( A e. Hf <-> ( rank ` A ) e. _om ) )
3 2 ibi
 |-  ( A e. Hf -> ( rank ` A ) e. _om )
4 peano2
 |-  ( ( rank ` A ) e. _om -> suc ( rank ` A ) e. _om )
5 3 4 syl
 |-  ( A e. Hf -> suc ( rank ` A ) e. _om )
6 1 5 eqeltrd
 |-  ( A e. Hf -> ( rank ` { A } ) e. _om )
7 snex
 |-  { A } e. _V
8 7 elhf2
 |-  ( { A } e. Hf <-> ( rank ` { A } ) e. _om )
9 6 8 sylibr
 |-  ( A e. Hf -> { A } e. Hf )