Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hfsn | |- ( A e. Hf -> { A } e. Hf ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ranksng | |- ( A e. Hf -> ( rank ` { A } ) = suc ( rank ` A ) ) |
|
2 | elhf2g | |- ( A e. Hf -> ( A e. Hf <-> ( rank ` A ) e. _om ) ) |
|
3 | 2 | ibi | |- ( A e. Hf -> ( rank ` A ) e. _om ) |
4 | peano2 | |- ( ( rank ` A ) e. _om -> suc ( rank ` A ) e. _om ) |
|
5 | 3 4 | syl | |- ( A e. Hf -> suc ( rank ` A ) e. _om ) |
6 | 1 5 | eqeltrd | |- ( A e. Hf -> ( rank ` { A } ) e. _om ) |
7 | snex | |- { A } e. _V |
|
8 | 7 | elhf2 | |- ( { A } e. Hf <-> ( rank ` { A } ) e. _om ) |
9 | 6 8 | sylibr | |- ( A e. Hf -> { A } e. Hf ) |