Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Hereditarily Finite Sets
hfsn
Next ⟩
hfadj
Metamath Proof Explorer
Ascii
Unicode
Theorem
hfsn
Description:
The singleton of an HF set is an HF set.
(Contributed by
Scott Fenton
, 15-Jul-2015)
Ref
Expression
Assertion
hfsn
⊢
A
∈
Hf
→
A
∈
Hf
Proof
Step
Hyp
Ref
Expression
1
ranksng
⊢
A
∈
Hf
→
rank
⁡
A
=
suc
⁡
rank
⁡
A
2
elhf2g
⊢
A
∈
Hf
→
A
∈
Hf
↔
rank
⁡
A
∈
ω
3
2
ibi
⊢
A
∈
Hf
→
rank
⁡
A
∈
ω
4
peano2
⊢
rank
⁡
A
∈
ω
→
suc
⁡
rank
⁡
A
∈
ω
5
3
4
syl
⊢
A
∈
Hf
→
suc
⁡
rank
⁡
A
∈
ω
6
1
5
eqeltrd
⊢
A
∈
Hf
→
rank
⁡
A
∈
ω
7
snex
⊢
A
∈
V
8
7
elhf2
⊢
A
∈
Hf
↔
rank
⁡
A
∈
ω
9
6
8
sylibr
⊢
A
∈
Hf
→
A
∈
Hf