Metamath Proof Explorer


Theorem hfsn

Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfsn A Hf A Hf

Proof

Step Hyp Ref Expression
1 ranksng A Hf rank A = suc rank A
2 elhf2g A Hf A Hf rank A ω
3 2 ibi A Hf rank A ω
4 peano2 rank A ω suc rank A ω
5 3 4 syl A Hf suc rank A ω
6 1 5 eqeltrd A Hf rank A ω
7 snex A V
8 7 elhf2 A Hf rank A ω
9 6 8 sylibr A Hf A Hf