Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Hereditarily Finite Sets
hfelhf
Next ⟩
hftr
Metamath Proof Explorer
Ascii
Unicode
Theorem
hfelhf
Description:
Any member of an HF set is itself an HF set.
(Contributed by
Scott Fenton
, 16-Jul-2015)
Ref
Expression
Assertion
hfelhf
⊢
A
∈
B
∧
B
∈
Hf
→
A
∈
Hf
Proof
Step
Hyp
Ref
Expression
1
rankelg
⊢
B
∈
Hf
∧
A
∈
B
→
rank
⁡
A
∈
rank
⁡
B
2
1
ancoms
⊢
A
∈
B
∧
B
∈
Hf
→
rank
⁡
A
∈
rank
⁡
B
3
elhf2g
⊢
B
∈
Hf
→
B
∈
Hf
↔
rank
⁡
B
∈
ω
4
3
ibi
⊢
B
∈
Hf
→
rank
⁡
B
∈
ω
5
elnn
⊢
rank
⁡
A
∈
rank
⁡
B
∧
rank
⁡
B
∈
ω
→
rank
⁡
A
∈
ω
6
elhf2g
⊢
A
∈
B
→
A
∈
Hf
↔
rank
⁡
A
∈
ω
7
5
6
syl5ibr
⊢
A
∈
B
→
rank
⁡
A
∈
rank
⁡
B
∧
rank
⁡
B
∈
ω
→
A
∈
Hf
8
7
expcomd
⊢
A
∈
B
→
rank
⁡
B
∈
ω
→
rank
⁡
A
∈
rank
⁡
B
→
A
∈
Hf
9
8
imp
⊢
A
∈
B
∧
rank
⁡
B
∈
ω
→
rank
⁡
A
∈
rank
⁡
B
→
A
∈
Hf
10
4
9
sylan2
⊢
A
∈
B
∧
B
∈
Hf
→
rank
⁡
A
∈
rank
⁡
B
→
A
∈
Hf
11
2
10
mpd
⊢
A
∈
B
∧
B
∈
Hf
→
A
∈
Hf