Metamath Proof Explorer


Theorem hfelhf

Description: Any member of an HF set is itself an HF set. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfelhf A B B Hf A Hf

Proof

Step Hyp Ref Expression
1 rankelg B Hf A B rank A rank B
2 1 ancoms A B B Hf rank A rank B
3 elhf2g B Hf B Hf rank B ω
4 3 ibi B Hf rank B ω
5 elnn rank A rank B rank B ω rank A ω
6 elhf2g A B A Hf rank A ω
7 5 6 syl5ibr A B rank A rank B rank B ω A Hf
8 7 expcomd A B rank B ω rank A rank B A Hf
9 8 imp A B rank B ω rank A rank B A Hf
10 4 9 sylan2 A B B Hf rank A rank B A Hf
11 2 10 mpd A B B Hf A Hf