Step |
Hyp |
Ref |
Expression |
1 |
|
dfcleq |
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
2 |
|
unvdif |
⊢ ( Hf ∪ ( V ∖ Hf ) ) = V |
3 |
2
|
raleqi |
⊢ ( ∀ 𝑥 ∈ ( Hf ∪ ( V ∖ Hf ) ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ V ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
4 |
|
ralv |
⊢ ( ∀ 𝑥 ∈ V ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
5 |
3 4
|
bitr2i |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ ( Hf ∪ ( V ∖ Hf ) ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
6 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( Hf ∪ ( V ∖ Hf ) ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ ( V ∖ Hf ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
7 |
1 5 6
|
3bitri |
⊢ ( 𝐴 = 𝐵 ↔ ( ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ ( V ∖ Hf ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
8 |
|
vex |
⊢ 𝑥 ∈ V |
9 |
|
eldif |
⊢ ( 𝑥 ∈ ( V ∖ Hf ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf ) ) |
10 |
8 9
|
mpbiran |
⊢ ( 𝑥 ∈ ( V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf ) |
11 |
|
hfelhf |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Hf ) → 𝑥 ∈ Hf ) |
12 |
11
|
stoic1b |
⊢ ( ( 𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴 ) |
13 |
12
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴 ) |
14 |
|
hfelhf |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝑥 ∈ Hf ) |
15 |
14
|
stoic1b |
⊢ ( ( 𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵 ) |
16 |
15
|
adantll |
⊢ ( ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵 ) |
17 |
13 16
|
2falsed |
⊢ ( ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
18 |
10 17
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ ( V ∖ Hf ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
19 |
18
|
ralrimiva |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀ 𝑥 ∈ ( V ∖ Hf ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
20 |
19
|
biantrud |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ ( V ∖ Hf ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) ) |
21 |
7 20
|
bitr4id |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |