| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcleq |
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 2 |
|
unvdif |
⊢ ( Hf ∪ ( V ∖ Hf ) ) = V |
| 3 |
2
|
raleqi |
⊢ ( ∀ 𝑥 ∈ ( Hf ∪ ( V ∖ Hf ) ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ V ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 4 |
|
ralv |
⊢ ( ∀ 𝑥 ∈ V ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 5 |
3 4
|
bitr2i |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ ( Hf ∪ ( V ∖ Hf ) ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 6 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( Hf ∪ ( V ∖ Hf ) ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ ( V ∖ Hf ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 7 |
1 5 6
|
3bitri |
⊢ ( 𝐴 = 𝐵 ↔ ( ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ ( V ∖ Hf ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 8 |
|
vex |
⊢ 𝑥 ∈ V |
| 9 |
|
eldif |
⊢ ( 𝑥 ∈ ( V ∖ Hf ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf ) ) |
| 10 |
8 9
|
mpbiran |
⊢ ( 𝑥 ∈ ( V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf ) |
| 11 |
|
hfelhf |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Hf ) → 𝑥 ∈ Hf ) |
| 12 |
11
|
stoic1b |
⊢ ( ( 𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴 ) |
| 13 |
12
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴 ) |
| 14 |
|
hfelhf |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝑥 ∈ Hf ) |
| 15 |
14
|
stoic1b |
⊢ ( ( 𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵 ) |
| 16 |
15
|
adantll |
⊢ ( ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵 ) |
| 17 |
13 16
|
2falsed |
⊢ ( ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 18 |
10 17
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ ( V ∖ Hf ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 19 |
18
|
ralrimiva |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀ 𝑥 ∈ ( V ∖ Hf ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 20 |
19
|
biantrud |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ ( V ∖ Hf ) ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) ) |
| 21 |
7 20
|
bitr4id |
⊢ ( ( 𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ Hf ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |