Step |
Hyp |
Ref |
Expression |
1 |
|
rankuni |
⊢ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) |
2 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
3 |
2
|
ontrci |
⊢ Tr ( rank ‘ 𝐴 ) |
4 |
|
df-tr |
⊢ ( Tr ( rank ‘ 𝐴 ) ↔ ∪ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) |
5 |
3 4
|
mpbi |
⊢ ∪ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) |
6 |
|
elhf2g |
⊢ ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
7 |
6
|
ibi |
⊢ ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω ) |
8 |
|
rankon |
⊢ ( rank ‘ ∪ 𝐴 ) ∈ On |
9 |
1 8
|
eqeltrri |
⊢ ∪ ( rank ‘ 𝐴 ) ∈ On |
10 |
9
|
onordi |
⊢ Ord ∪ ( rank ‘ 𝐴 ) |
11 |
|
ordom |
⊢ Ord ω |
12 |
|
ordtr2 |
⊢ ( ( Ord ∪ ( rank ‘ 𝐴 ) ∧ Ord ω ) → ( ( ∪ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ ω ) → ∪ ( rank ‘ 𝐴 ) ∈ ω ) ) |
13 |
10 11 12
|
mp2an |
⊢ ( ( ∪ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ ω ) → ∪ ( rank ‘ 𝐴 ) ∈ ω ) |
14 |
5 7 13
|
sylancr |
⊢ ( 𝐴 ∈ Hf → ∪ ( rank ‘ 𝐴 ) ∈ ω ) |
15 |
1 14
|
eqeltrid |
⊢ ( 𝐴 ∈ Hf → ( rank ‘ ∪ 𝐴 ) ∈ ω ) |
16 |
|
uniexg |
⊢ ( 𝐴 ∈ Hf → ∪ 𝐴 ∈ V ) |
17 |
|
elhf2g |
⊢ ( ∪ 𝐴 ∈ V → ( ∪ 𝐴 ∈ Hf ↔ ( rank ‘ ∪ 𝐴 ) ∈ ω ) ) |
18 |
16 17
|
syl |
⊢ ( 𝐴 ∈ Hf → ( ∪ 𝐴 ∈ Hf ↔ ( rank ‘ ∪ 𝐴 ) ∈ ω ) ) |
19 |
15 18
|
mpbird |
⊢ ( 𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |