| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankuni | ⊢ ( rank ‘ ∪  𝐴 )  =  ∪  ( rank ‘ 𝐴 ) | 
						
							| 2 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 3 |  | ontr | ⊢ ( ( rank ‘ 𝐴 )  ∈  On  →  Tr  ( rank ‘ 𝐴 ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ Tr  ( rank ‘ 𝐴 ) | 
						
							| 5 |  | df-tr | ⊢ ( Tr  ( rank ‘ 𝐴 )  ↔  ∪  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ 𝐴 ) ) | 
						
							| 6 | 4 5 | mpbi | ⊢ ∪  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ 𝐴 ) | 
						
							| 7 |  | elhf2g | ⊢ ( 𝐴  ∈   Hf   →  ( 𝐴  ∈   Hf   ↔  ( rank ‘ 𝐴 )  ∈  ω ) ) | 
						
							| 8 | 7 | ibi | ⊢ ( 𝐴  ∈   Hf   →  ( rank ‘ 𝐴 )  ∈  ω ) | 
						
							| 9 |  | rankon | ⊢ ( rank ‘ ∪  𝐴 )  ∈  On | 
						
							| 10 | 1 9 | eqeltrri | ⊢ ∪  ( rank ‘ 𝐴 )  ∈  On | 
						
							| 11 | 10 | onordi | ⊢ Ord  ∪  ( rank ‘ 𝐴 ) | 
						
							| 12 |  | ordom | ⊢ Ord  ω | 
						
							| 13 |  | ordtr2 | ⊢ ( ( Ord  ∪  ( rank ‘ 𝐴 )  ∧  Ord  ω )  →  ( ( ∪  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ 𝐴 )  ∧  ( rank ‘ 𝐴 )  ∈  ω )  →  ∪  ( rank ‘ 𝐴 )  ∈  ω ) ) | 
						
							| 14 | 11 12 13 | mp2an | ⊢ ( ( ∪  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ 𝐴 )  ∧  ( rank ‘ 𝐴 )  ∈  ω )  →  ∪  ( rank ‘ 𝐴 )  ∈  ω ) | 
						
							| 15 | 6 8 14 | sylancr | ⊢ ( 𝐴  ∈   Hf   →  ∪  ( rank ‘ 𝐴 )  ∈  ω ) | 
						
							| 16 | 1 15 | eqeltrid | ⊢ ( 𝐴  ∈   Hf   →  ( rank ‘ ∪  𝐴 )  ∈  ω ) | 
						
							| 17 |  | uniexg | ⊢ ( 𝐴  ∈   Hf   →  ∪  𝐴  ∈  V ) | 
						
							| 18 |  | elhf2g | ⊢ ( ∪  𝐴  ∈  V  →  ( ∪  𝐴  ∈   Hf   ↔  ( rank ‘ ∪  𝐴 )  ∈  ω ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐴  ∈   Hf   →  ( ∪  𝐴  ∈   Hf   ↔  ( rank ‘ ∪  𝐴 )  ∈  ω ) ) | 
						
							| 20 | 16 19 | mpbird | ⊢ ( 𝐴  ∈   Hf   →  ∪  𝐴  ∈   Hf  ) |