Step |
Hyp |
Ref |
Expression |
1 |
|
rankuni |
⊢ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) |
2 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
3 |
|
ontr |
⊢ ( ( rank ‘ 𝐴 ) ∈ On → Tr ( rank ‘ 𝐴 ) ) |
4 |
2 3
|
ax-mp |
⊢ Tr ( rank ‘ 𝐴 ) |
5 |
|
df-tr |
⊢ ( Tr ( rank ‘ 𝐴 ) ↔ ∪ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) |
6 |
4 5
|
mpbi |
⊢ ∪ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) |
7 |
|
elhf2g |
⊢ ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
8 |
7
|
ibi |
⊢ ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω ) |
9 |
|
rankon |
⊢ ( rank ‘ ∪ 𝐴 ) ∈ On |
10 |
1 9
|
eqeltrri |
⊢ ∪ ( rank ‘ 𝐴 ) ∈ On |
11 |
10
|
onordi |
⊢ Ord ∪ ( rank ‘ 𝐴 ) |
12 |
|
ordom |
⊢ Ord ω |
13 |
|
ordtr2 |
⊢ ( ( Ord ∪ ( rank ‘ 𝐴 ) ∧ Ord ω ) → ( ( ∪ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ ω ) → ∪ ( rank ‘ 𝐴 ) ∈ ω ) ) |
14 |
11 12 13
|
mp2an |
⊢ ( ( ∪ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ ω ) → ∪ ( rank ‘ 𝐴 ) ∈ ω ) |
15 |
6 8 14
|
sylancr |
⊢ ( 𝐴 ∈ Hf → ∪ ( rank ‘ 𝐴 ) ∈ ω ) |
16 |
1 15
|
eqeltrid |
⊢ ( 𝐴 ∈ Hf → ( rank ‘ ∪ 𝐴 ) ∈ ω ) |
17 |
|
uniexg |
⊢ ( 𝐴 ∈ Hf → ∪ 𝐴 ∈ V ) |
18 |
|
elhf2g |
⊢ ( ∪ 𝐴 ∈ V → ( ∪ 𝐴 ∈ Hf ↔ ( rank ‘ ∪ 𝐴 ) ∈ ω ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ Hf → ( ∪ 𝐴 ∈ Hf ↔ ( rank ‘ ∪ 𝐴 ) ∈ ω ) ) |
20 |
16 19
|
mpbird |
⊢ ( 𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |