Metamath Proof Explorer


Theorem hfuni

Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfuni ( 𝐴 ∈ Hf → 𝐴 ∈ Hf )

Proof

Step Hyp Ref Expression
1 rankuni ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 )
2 rankon ( rank ‘ 𝐴 ) ∈ On
3 ontr ( ( rank ‘ 𝐴 ) ∈ On → Tr ( rank ‘ 𝐴 ) )
4 2 3 ax-mp Tr ( rank ‘ 𝐴 )
5 df-tr ( Tr ( rank ‘ 𝐴 ) ↔ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) )
6 4 5 mpbi ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 )
7 elhf2g ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
8 7 ibi ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω )
9 rankon ( rank ‘ 𝐴 ) ∈ On
10 1 9 eqeltrri ( rank ‘ 𝐴 ) ∈ On
11 10 onordi Ord ( rank ‘ 𝐴 )
12 ordom Ord ω
13 ordtr2 ( ( Ord ( rank ‘ 𝐴 ) ∧ Ord ω ) → ( ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ ω ) → ( rank ‘ 𝐴 ) ∈ ω ) )
14 11 12 13 mp2an ( ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ ω ) → ( rank ‘ 𝐴 ) ∈ ω )
15 6 8 14 sylancr ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω )
16 1 15 eqeltrid ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω )
17 uniexg ( 𝐴 ∈ Hf → 𝐴 ∈ V )
18 elhf2g ( 𝐴 ∈ V → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
19 17 18 syl ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
20 16 19 mpbird ( 𝐴 ∈ Hf → 𝐴 ∈ Hf )