Metamath Proof Explorer


Theorem hfuni

Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfuni ( 𝐴 ∈ Hf → 𝐴 ∈ Hf )

Proof

Step Hyp Ref Expression
1 rankuni ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 )
2 rankon ( rank ‘ 𝐴 ) ∈ On
3 2 ontrci Tr ( rank ‘ 𝐴 )
4 df-tr ( Tr ( rank ‘ 𝐴 ) ↔ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) )
5 3 4 mpbi ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 )
6 elhf2g ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
7 6 ibi ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω )
8 rankon ( rank ‘ 𝐴 ) ∈ On
9 1 8 eqeltrri ( rank ‘ 𝐴 ) ∈ On
10 9 onordi Ord ( rank ‘ 𝐴 )
11 ordom Ord ω
12 ordtr2 ( ( Ord ( rank ‘ 𝐴 ) ∧ Ord ω ) → ( ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ ω ) → ( rank ‘ 𝐴 ) ∈ ω ) )
13 10 11 12 mp2an ( ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ ω ) → ( rank ‘ 𝐴 ) ∈ ω )
14 5 7 13 sylancr ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω )
15 1 14 eqeltrid ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω )
16 uniexg ( 𝐴 ∈ Hf → 𝐴 ∈ V )
17 elhf2g ( 𝐴 ∈ V → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
18 16 17 syl ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
19 15 18 mpbird ( 𝐴 ∈ Hf → 𝐴 ∈ Hf )