Metamath Proof Explorer


Theorem hfuni

Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfuni A Hf A Hf

Proof

Step Hyp Ref Expression
1 rankuni rank A = rank A
2 rankon rank A On
3 ontr rank A On Tr rank A
4 2 3 ax-mp Tr rank A
5 df-tr Tr rank A rank A rank A
6 4 5 mpbi rank A rank A
7 elhf2g A Hf A Hf rank A ω
8 7 ibi A Hf rank A ω
9 rankon rank A On
10 1 9 eqeltrri rank A On
11 10 onordi Ord rank A
12 ordom Ord ω
13 ordtr2 Ord rank A Ord ω rank A rank A rank A ω rank A ω
14 11 12 13 mp2an rank A rank A rank A ω rank A ω
15 6 8 14 sylancr A Hf rank A ω
16 1 15 eqeltrid A Hf rank A ω
17 uniexg A Hf A V
18 elhf2g A V A Hf rank A ω
19 17 18 syl A Hf A Hf rank A ω
20 16 19 mpbird A Hf A Hf