Metamath Proof Explorer


Theorem hfpw

Description: The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfpw A Hf 𝒫 A Hf

Proof

Step Hyp Ref Expression
1 rankpwg A Hf rank 𝒫 A = suc rank A
2 elhf2g A Hf A Hf rank A ω
3 2 ibi A Hf rank A ω
4 peano2 rank A ω suc rank A ω
5 3 4 syl A Hf suc rank A ω
6 1 5 eqeltrd A Hf rank 𝒫 A ω
7 pwexg A Hf 𝒫 A V
8 elhf2g 𝒫 A V 𝒫 A Hf rank 𝒫 A ω
9 7 8 syl A Hf 𝒫 A Hf rank 𝒫 A ω
10 6 9 mpbird A Hf 𝒫 A Hf