| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankpwg |
|- ( A e. Hf -> ( rank ` ~P A ) = suc ( rank ` A ) ) |
| 2 |
|
elhf2g |
|- ( A e. Hf -> ( A e. Hf <-> ( rank ` A ) e. _om ) ) |
| 3 |
2
|
ibi |
|- ( A e. Hf -> ( rank ` A ) e. _om ) |
| 4 |
|
peano2 |
|- ( ( rank ` A ) e. _om -> suc ( rank ` A ) e. _om ) |
| 5 |
3 4
|
syl |
|- ( A e. Hf -> suc ( rank ` A ) e. _om ) |
| 6 |
1 5
|
eqeltrd |
|- ( A e. Hf -> ( rank ` ~P A ) e. _om ) |
| 7 |
|
pwexg |
|- ( A e. Hf -> ~P A e. _V ) |
| 8 |
|
elhf2g |
|- ( ~P A e. _V -> ( ~P A e. Hf <-> ( rank ` ~P A ) e. _om ) ) |
| 9 |
7 8
|
syl |
|- ( A e. Hf -> ( ~P A e. Hf <-> ( rank ` ~P A ) e. _om ) ) |
| 10 |
6 9
|
mpbird |
|- ( A e. Hf -> ~P A e. Hf ) |