Metamath Proof Explorer


Theorem hfpw

Description: The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfpw
|- ( A e. Hf -> ~P A e. Hf )

Proof

Step Hyp Ref Expression
1 rankpwg
 |-  ( A e. Hf -> ( rank ` ~P A ) = suc ( rank ` A ) )
2 elhf2g
 |-  ( A e. Hf -> ( A e. Hf <-> ( rank ` A ) e. _om ) )
3 2 ibi
 |-  ( A e. Hf -> ( rank ` A ) e. _om )
4 peano2
 |-  ( ( rank ` A ) e. _om -> suc ( rank ` A ) e. _om )
5 3 4 syl
 |-  ( A e. Hf -> suc ( rank ` A ) e. _om )
6 1 5 eqeltrd
 |-  ( A e. Hf -> ( rank ` ~P A ) e. _om )
7 pwexg
 |-  ( A e. Hf -> ~P A e. _V )
8 elhf2g
 |-  ( ~P A e. _V -> ( ~P A e. Hf <-> ( rank ` ~P A ) e. _om ) )
9 7 8 syl
 |-  ( A e. Hf -> ( ~P A e. Hf <-> ( rank ` ~P A ) e. _om ) )
10 6 9 mpbird
 |-  ( A e. Hf -> ~P A e. Hf )