| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankpwg |  |-  ( A e. Hf -> ( rank ` ~P A ) = suc ( rank ` A ) ) | 
						
							| 2 |  | elhf2g |  |-  ( A e. Hf -> ( A e. Hf <-> ( rank ` A ) e. _om ) ) | 
						
							| 3 | 2 | ibi |  |-  ( A e. Hf -> ( rank ` A ) e. _om ) | 
						
							| 4 |  | peano2 |  |-  ( ( rank ` A ) e. _om -> suc ( rank ` A ) e. _om ) | 
						
							| 5 | 3 4 | syl |  |-  ( A e. Hf -> suc ( rank ` A ) e. _om ) | 
						
							| 6 | 1 5 | eqeltrd |  |-  ( A e. Hf -> ( rank ` ~P A ) e. _om ) | 
						
							| 7 |  | pwexg |  |-  ( A e. Hf -> ~P A e. _V ) | 
						
							| 8 |  | elhf2g |  |-  ( ~P A e. _V -> ( ~P A e. Hf <-> ( rank ` ~P A ) e. _om ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( A e. Hf -> ( ~P A e. Hf <-> ( rank ` ~P A ) e. _om ) ) | 
						
							| 10 | 6 9 | mpbird |  |-  ( A e. Hf -> ~P A e. Hf ) |