| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankpwg |
⊢ ( 𝐴 ∈ Hf → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) |
| 2 |
|
elhf2g |
⊢ ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) ) |
| 3 |
2
|
ibi |
⊢ ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω ) |
| 4 |
|
peano2 |
⊢ ( ( rank ‘ 𝐴 ) ∈ ω → suc ( rank ‘ 𝐴 ) ∈ ω ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ Hf → suc ( rank ‘ 𝐴 ) ∈ ω ) |
| 6 |
1 5
|
eqeltrd |
⊢ ( 𝐴 ∈ Hf → ( rank ‘ 𝒫 𝐴 ) ∈ ω ) |
| 7 |
|
pwexg |
⊢ ( 𝐴 ∈ Hf → 𝒫 𝐴 ∈ V ) |
| 8 |
|
elhf2g |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ Hf ↔ ( rank ‘ 𝒫 𝐴 ) ∈ ω ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ Hf → ( 𝒫 𝐴 ∈ Hf ↔ ( rank ‘ 𝒫 𝐴 ) ∈ ω ) ) |
| 10 |
6 9
|
mpbird |
⊢ ( 𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf ) |