| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankpwg | ⊢ ( 𝐴  ∈   Hf   →  ( rank ‘ 𝒫  𝐴 )  =  suc  ( rank ‘ 𝐴 ) ) | 
						
							| 2 |  | elhf2g | ⊢ ( 𝐴  ∈   Hf   →  ( 𝐴  ∈   Hf   ↔  ( rank ‘ 𝐴 )  ∈  ω ) ) | 
						
							| 3 | 2 | ibi | ⊢ ( 𝐴  ∈   Hf   →  ( rank ‘ 𝐴 )  ∈  ω ) | 
						
							| 4 |  | peano2 | ⊢ ( ( rank ‘ 𝐴 )  ∈  ω  →  suc  ( rank ‘ 𝐴 )  ∈  ω ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐴  ∈   Hf   →  suc  ( rank ‘ 𝐴 )  ∈  ω ) | 
						
							| 6 | 1 5 | eqeltrd | ⊢ ( 𝐴  ∈   Hf   →  ( rank ‘ 𝒫  𝐴 )  ∈  ω ) | 
						
							| 7 |  | pwexg | ⊢ ( 𝐴  ∈   Hf   →  𝒫  𝐴  ∈  V ) | 
						
							| 8 |  | elhf2g | ⊢ ( 𝒫  𝐴  ∈  V  →  ( 𝒫  𝐴  ∈   Hf   ↔  ( rank ‘ 𝒫  𝐴 )  ∈  ω ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐴  ∈   Hf   →  ( 𝒫  𝐴  ∈   Hf   ↔  ( rank ‘ 𝒫  𝐴 )  ∈  ω ) ) | 
						
							| 10 | 6 9 | mpbird | ⊢ ( 𝐴  ∈   Hf   →  𝒫  𝐴  ∈   Hf  ) |