Metamath Proof Explorer


Theorem hfpw

Description: The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfpw ( 𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf )

Proof

Step Hyp Ref Expression
1 rankpwg ( 𝐴 ∈ Hf → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) )
2 elhf2g ( 𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ ( rank ‘ 𝐴 ) ∈ ω ) )
3 2 ibi ( 𝐴 ∈ Hf → ( rank ‘ 𝐴 ) ∈ ω )
4 peano2 ( ( rank ‘ 𝐴 ) ∈ ω → suc ( rank ‘ 𝐴 ) ∈ ω )
5 3 4 syl ( 𝐴 ∈ Hf → suc ( rank ‘ 𝐴 ) ∈ ω )
6 1 5 eqeltrd ( 𝐴 ∈ Hf → ( rank ‘ 𝒫 𝐴 ) ∈ ω )
7 pwexg ( 𝐴 ∈ Hf → 𝒫 𝐴 ∈ V )
8 elhf2g ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ Hf ↔ ( rank ‘ 𝒫 𝐴 ) ∈ ω ) )
9 7 8 syl ( 𝐴 ∈ Hf → ( 𝒫 𝐴 ∈ Hf ↔ ( rank ‘ 𝒫 𝐴 ) ∈ ω ) )
10 6 9 mpbird ( 𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf )