Metamath Proof Explorer


Theorem hfninf

Description: _om is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfninf ¬ ω ∈ Hf

Proof

Step Hyp Ref Expression
1 elirr ¬ ω ∈ ω
2 elhf2g ( ω ∈ Hf → ( ω ∈ Hf ↔ ( rank ‘ ω ) ∈ ω ) )
3 ordom Ord ω
4 elong ( ω ∈ Hf → ( ω ∈ On ↔ Ord ω ) )
5 3 4 mpbiri ( ω ∈ Hf → ω ∈ On )
6 r111 𝑅1 : On –1-1→ V
7 f1dm ( 𝑅1 : On –1-1→ V → dom 𝑅1 = On )
8 6 7 ax-mp dom 𝑅1 = On
9 8 eleq2i ( ω ∈ dom 𝑅1 ↔ ω ∈ On )
10 rankonid ( ω ∈ dom 𝑅1 ↔ ( rank ‘ ω ) = ω )
11 9 10 bitr3i ( ω ∈ On ↔ ( rank ‘ ω ) = ω )
12 5 11 sylib ( ω ∈ Hf → ( rank ‘ ω ) = ω )
13 12 eleq1d ( ω ∈ Hf → ( ( rank ‘ ω ) ∈ ω ↔ ω ∈ ω ) )
14 2 13 bitrd ( ω ∈ Hf → ( ω ∈ Hf ↔ ω ∈ ω ) )
15 1 14 mtbiri ( ω ∈ Hf → ¬ ω ∈ Hf )
16 pm2.01 ( ( ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf )
17 15 16 ax-mp ¬ ω ∈ Hf