Step |
Hyp |
Ref |
Expression |
1 |
|
elirr |
⊢ ¬ ω ∈ ω |
2 |
|
elhf2g |
⊢ ( ω ∈ Hf → ( ω ∈ Hf ↔ ( rank ‘ ω ) ∈ ω ) ) |
3 |
|
ordom |
⊢ Ord ω |
4 |
|
elong |
⊢ ( ω ∈ Hf → ( ω ∈ On ↔ Ord ω ) ) |
5 |
3 4
|
mpbiri |
⊢ ( ω ∈ Hf → ω ∈ On ) |
6 |
|
r111 |
⊢ 𝑅1 : On –1-1→ V |
7 |
|
f1dm |
⊢ ( 𝑅1 : On –1-1→ V → dom 𝑅1 = On ) |
8 |
6 7
|
ax-mp |
⊢ dom 𝑅1 = On |
9 |
8
|
eleq2i |
⊢ ( ω ∈ dom 𝑅1 ↔ ω ∈ On ) |
10 |
|
rankonid |
⊢ ( ω ∈ dom 𝑅1 ↔ ( rank ‘ ω ) = ω ) |
11 |
9 10
|
bitr3i |
⊢ ( ω ∈ On ↔ ( rank ‘ ω ) = ω ) |
12 |
5 11
|
sylib |
⊢ ( ω ∈ Hf → ( rank ‘ ω ) = ω ) |
13 |
12
|
eleq1d |
⊢ ( ω ∈ Hf → ( ( rank ‘ ω ) ∈ ω ↔ ω ∈ ω ) ) |
14 |
2 13
|
bitrd |
⊢ ( ω ∈ Hf → ( ω ∈ Hf ↔ ω ∈ ω ) ) |
15 |
1 14
|
mtbiri |
⊢ ( ω ∈ Hf → ¬ ω ∈ Hf ) |
16 |
|
pm2.01 |
⊢ ( ( ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf ) |
17 |
15 16
|
ax-mp |
⊢ ¬ ω ∈ Hf |