Metamath Proof Explorer


Theorem r111

Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013)

Ref Expression
Assertion r111 𝑅1 : On –1-1→ V

Proof

Step Hyp Ref Expression
1 r1fnon 𝑅1 Fn On
2 dffn2 ( 𝑅1 Fn On ↔ 𝑅1 : On ⟶ V )
3 1 2 mpbi 𝑅1 : On ⟶ V
4 eloni ( 𝑥 ∈ On → Ord 𝑥 )
5 eloni ( 𝑦 ∈ On → Ord 𝑦 )
6 ordtri3or ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥𝑦𝑥 = 𝑦𝑦𝑥 ) )
7 4 5 6 syl2an ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥𝑦𝑥 = 𝑦𝑦𝑥 ) )
8 sdomirr ¬ ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑦 )
9 r1sdom ( ( 𝑦 ∈ On ∧ 𝑥𝑦 ) → ( 𝑅1𝑥 ) ≺ ( 𝑅1𝑦 ) )
10 breq1 ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → ( ( 𝑅1𝑥 ) ≺ ( 𝑅1𝑦 ) ↔ ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑦 ) ) )
11 9 10 syl5ibcom ( ( 𝑦 ∈ On ∧ 𝑥𝑦 ) → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑦 ) ) )
12 8 11 mtoi ( ( 𝑦 ∈ On ∧ 𝑥𝑦 ) → ¬ ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) )
13 12 3adant1 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦 ) → ¬ ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) )
14 13 pm2.21d ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦 ) → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) )
15 14 3expia ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥𝑦 → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) ) )
16 ax-1 ( 𝑥 = 𝑦 → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) )
17 16 a1i ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 = 𝑦 → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) ) )
18 r1sdom ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑥 ) )
19 breq2 ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → ( ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑥 ) ↔ ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑦 ) ) )
20 18 19 syl5ibcom ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑦 ) ) )
21 8 20 mtoi ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ¬ ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) )
22 21 3adant2 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥 ) → ¬ ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) )
23 22 pm2.21d ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦𝑥 ) → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) )
24 23 3expia ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑦𝑥 → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) ) )
25 15 17 24 3jaod ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝑥𝑦𝑥 = 𝑦𝑦𝑥 ) → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) ) )
26 7 25 mpd ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) )
27 26 rgen2 𝑥 ∈ On ∀ 𝑦 ∈ On ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 )
28 dff13 ( 𝑅1 : On –1-1→ V ↔ ( 𝑅1 : On ⟶ V ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) → 𝑥 = 𝑦 ) ) )
29 3 27 28 mpbir2an 𝑅1 : On –1-1→ V