| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∅ ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) |
| 3 |
2
|
breq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) ) |
| 4 |
1 3
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ ∅ → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) ) ) |
| 5 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝑦 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
| 7 |
6
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 8 |
5 7
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 9 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ suc 𝑦 ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
| 11 |
10
|
breq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 12 |
9 11
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ suc 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 13 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝐴 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝐴 ) ) |
| 15 |
14
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 16 |
13 15
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ 𝐴 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 17 |
|
noel |
⊢ ¬ 𝐵 ∈ ∅ |
| 18 |
17
|
pm2.21i |
⊢ ( 𝐵 ∈ ∅ → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ ∅ ) ) |
| 19 |
|
elsuci |
⊢ ( 𝐵 ∈ suc 𝑦 → ( 𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦 ) ) |
| 20 |
|
sdomtr |
⊢ ( ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ∧ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) |
| 21 |
20
|
expcom |
⊢ ( ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 22 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝑦 ) ∈ V |
| 23 |
22
|
canth2 |
⊢ ( 𝑅1 ‘ 𝑦 ) ≺ 𝒫 ( 𝑅1 ‘ 𝑦 ) |
| 24 |
|
r1suc |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
| 25 |
23 24
|
breqtrrid |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) |
| 26 |
21 25
|
syl11 |
⊢ ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 27 |
26
|
imim2i |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝐵 = 𝑦 → ( 𝑅1 ‘ 𝐵 ) = ( 𝑅1 ‘ 𝑦 ) ) |
| 29 |
28
|
breq1d |
⊢ ( 𝐵 = 𝑦 → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 30 |
25 29
|
imbitrrid |
⊢ ( 𝐵 = 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 31 |
30
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 = 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 32 |
27 31
|
jaod |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( ( 𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦 ) → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 33 |
19 32
|
syl5 |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ suc 𝑦 → ( 𝑦 ∈ On → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 34 |
33
|
com3r |
⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ suc 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 35 |
|
limuni |
⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) |
| 36 |
35
|
eleq2d |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∪ 𝑥 ) ) |
| 37 |
|
eluni2 |
⊢ ( 𝐵 ∈ ∪ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) |
| 38 |
36 37
|
bitrdi |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) ) |
| 39 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) → ∃ 𝑦 ∈ 𝑥 ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) ) |
| 40 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝑥 ) ∈ V |
| 41 |
|
ssiun2 |
⊢ ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 42 |
|
vex |
⊢ 𝑥 ∈ V |
| 43 |
|
r1lim |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 44 |
42 43
|
mpan |
⊢ ( Lim 𝑥 → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 45 |
44
|
sseq2d |
⊢ ( Lim 𝑥 → ( ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) ) |
| 46 |
41 45
|
imbitrrid |
⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 47 |
|
ssdomg |
⊢ ( ( 𝑅1 ‘ 𝑥 ) ∈ V → ( ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 48 |
40 46 47
|
mpsylsyld |
⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 49 |
|
id |
⊢ ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 50 |
49
|
imp |
⊢ ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) |
| 51 |
|
sdomdomtr |
⊢ ( ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ∧ ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) |
| 52 |
51
|
expcom |
⊢ ( ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) → ( ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 53 |
50 52
|
syl5 |
⊢ ( ( 𝑅1 ‘ 𝑦 ) ≼ ( 𝑅1 ‘ 𝑥 ) → ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 54 |
48 53
|
syl6 |
⊢ ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 55 |
54
|
rexlimdv |
⊢ ( Lim 𝑥 → ( ∃ 𝑦 ∈ 𝑥 ( ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 56 |
39 55
|
syl5 |
⊢ ( Lim 𝑥 → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 57 |
56
|
expcomd |
⊢ ( Lim 𝑥 → ( ∃ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 58 |
38 57
|
sylbid |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 59 |
58
|
com23 |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝐵 ∈ 𝑥 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 60 |
4 8 12 16 18 34 59
|
tfinds |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ 𝐴 → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 61 |
60
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝐵 ) ≺ ( 𝑅1 ‘ 𝐴 ) ) |