| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sdomdom | 
							⊢ ( 𝐴  ≺  𝐵  →  𝐴  ≼  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							domtr | 
							⊢ ( ( 𝐴  ≼  𝐵  ∧  𝐵  ≼  𝐶 )  →  𝐴  ≼  𝐶 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan | 
							⊢ ( ( 𝐴  ≺  𝐵  ∧  𝐵  ≼  𝐶 )  →  𝐴  ≼  𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ≺  𝐵  ∧  𝐵  ≼  𝐶 )  →  𝐴  ≺  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ≺  𝐵  ∧  𝐵  ≼  𝐶 )  →  𝐵  ≼  𝐶 )  | 
						
						
							| 6 | 
							
								
							 | 
							ensym | 
							⊢ ( 𝐴  ≈  𝐶  →  𝐶  ≈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							domentr | 
							⊢ ( ( 𝐵  ≼  𝐶  ∧  𝐶  ≈  𝐴 )  →  𝐵  ≼  𝐴 )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							syl2an | 
							⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐵  ≼  𝐶 )  ∧  𝐴  ≈  𝐶 )  →  𝐵  ≼  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							domnsym | 
							⊢ ( 𝐵  ≼  𝐴  →  ¬  𝐴  ≺  𝐵 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ≺  𝐵  ∧  𝐵  ≼  𝐶 )  ∧  𝐴  ≈  𝐶 )  →  ¬  𝐴  ≺  𝐵 )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							⊢ ( ( 𝐴  ≺  𝐵  ∧  𝐵  ≼  𝐶 )  →  ( 𝐴  ≈  𝐶  →  ¬  𝐴  ≺  𝐵 ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							mt2d | 
							⊢ ( ( 𝐴  ≺  𝐵  ∧  𝐵  ≼  𝐶 )  →  ¬  𝐴  ≈  𝐶 )  | 
						
						
							| 13 | 
							
								
							 | 
							brsdom | 
							⊢ ( 𝐴  ≺  𝐶  ↔  ( 𝐴  ≼  𝐶  ∧  ¬  𝐴  ≈  𝐶 ) )  | 
						
						
							| 14 | 
							
								3 12 13
							 | 
							sylanbrc | 
							⊢ ( ( 𝐴  ≺  𝐵  ∧  𝐵  ≼  𝐶 )  →  𝐴  ≺  𝐶 )  |