Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Hereditarily Finite Sets
hfninf
Next ⟩
Mathbox for Jeff Hankins
Metamath Proof Explorer
Ascii
Unicode
Theorem
hfninf
Description:
_om
is not hereditarily finite.
(Contributed by
Scott Fenton
, 16-Jul-2015)
Ref
Expression
Assertion
hfninf
⊢
¬
ω
∈
Hf
Proof
Step
Hyp
Ref
Expression
1
elirr
⊢
¬
ω
∈
ω
2
elhf2g
⊢
ω
∈
Hf
→
ω
∈
Hf
↔
rank
⁡
ω
∈
ω
3
ordom
⊢
Ord
⁡
ω
4
elong
⊢
ω
∈
Hf
→
ω
∈
On
↔
Ord
⁡
ω
5
3
4
mpbiri
⊢
ω
∈
Hf
→
ω
∈
On
6
r111
⊢
R
1
:
On
⟶
1-1
V
7
f1dm
⊢
R
1
:
On
⟶
1-1
V
→
dom
⁡
R
1
=
On
8
6
7
ax-mp
⊢
dom
⁡
R
1
=
On
9
8
eleq2i
⊢
ω
∈
dom
⁡
R
1
↔
ω
∈
On
10
rankonid
⊢
ω
∈
dom
⁡
R
1
↔
rank
⁡
ω
=
ω
11
9
10
bitr3i
⊢
ω
∈
On
↔
rank
⁡
ω
=
ω
12
5
11
sylib
⊢
ω
∈
Hf
→
rank
⁡
ω
=
ω
13
12
eleq1d
⊢
ω
∈
Hf
→
rank
⁡
ω
∈
ω
↔
ω
∈
ω
14
2
13
bitrd
⊢
ω
∈
Hf
→
ω
∈
Hf
↔
ω
∈
ω
15
1
14
mtbiri
⊢
ω
∈
Hf
→
¬
ω
∈
Hf
16
pm2.01
⊢
ω
∈
Hf
→
¬
ω
∈
Hf
→
¬
ω
∈
Hf
17
15
16
ax-mp
⊢
¬
ω
∈
Hf