Metamath Proof Explorer


Theorem hfninf

Description: _om is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfninf ¬ ω Hf

Proof

Step Hyp Ref Expression
1 elirr ¬ ω ω
2 elhf2g ω Hf ω Hf rank ω ω
3 ordom Ord ω
4 elong ω Hf ω On Ord ω
5 3 4 mpbiri ω Hf ω On
6 r111 R1 : On 1-1 V
7 f1dm R1 : On 1-1 V dom R1 = On
8 6 7 ax-mp dom R1 = On
9 8 eleq2i ω dom R1 ω On
10 rankonid ω dom R1 rank ω = ω
11 9 10 bitr3i ω On rank ω = ω
12 5 11 sylib ω Hf rank ω = ω
13 12 eleq1d ω Hf rank ω ω ω ω
14 2 13 bitrd ω Hf ω Hf ω ω
15 1 14 mtbiri ω Hf ¬ ω Hf
16 pm2.01 ω Hf ¬ ω Hf ¬ ω Hf
17 15 16 ax-mp ¬ ω Hf