Metamath Proof Explorer


Theorem rankpwg

Description: The rank of a power set. Closed form of rankpw . (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion rankpwg A V rank 𝒫 A = suc rank A

Proof

Step Hyp Ref Expression
1 pweq x = A 𝒫 x = 𝒫 A
2 1 fveq2d x = A rank 𝒫 x = rank 𝒫 A
3 fveq2 x = A rank x = rank A
4 suceq rank x = rank A suc rank x = suc rank A
5 3 4 syl x = A suc rank x = suc rank A
6 2 5 eqeq12d x = A rank 𝒫 x = suc rank x rank 𝒫 A = suc rank A
7 vex x V
8 7 rankpw rank 𝒫 x = suc rank x
9 6 8 vtoclg A V rank 𝒫 A = suc rank A