Metamath Proof Explorer


Theorem rankpwg

Description: The rank of a power set. Closed form of rankpw . (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion rankpwg AVrank𝒫A=sucrankA

Proof

Step Hyp Ref Expression
1 pweq x=A𝒫x=𝒫A
2 1 fveq2d x=Arank𝒫x=rank𝒫A
3 fveq2 x=Arankx=rankA
4 suceq rankx=rankAsucrankx=sucrankA
5 3 4 syl x=Asucrankx=sucrankA
6 2 5 eqeq12d x=Arank𝒫x=sucrankxrank𝒫A=sucrankA
7 vex xV
8 7 rankpw rank𝒫x=sucrankx
9 6 8 vtoclg AVrank𝒫A=sucrankA