Metamath Proof Explorer


Theorem rankpw

Description: The rank of a power set. Part of Exercise 30 of Enderton p. 207. (Contributed by NM, 22-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankpw.1 AV
Assertion rankpw rank𝒫A=sucrankA

Proof

Step Hyp Ref Expression
1 rankpw.1 AV
2 unir1 R1On=V
3 1 2 eleqtrri AR1On
4 rankpwi AR1Onrank𝒫A=sucrankA
5 3 4 ax-mp rank𝒫A=sucrankA