| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unieq |
⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) |
| 2 |
1
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ ∪ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) |
| 4 |
3
|
unieqd |
⊢ ( 𝑥 = 𝐴 → ∪ ( rank ‘ 𝑥 ) = ∪ ( rank ‘ 𝐴 ) ) |
| 5 |
2 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ ∪ 𝑥 ) = ∪ ( rank ‘ 𝑥 ) ↔ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) ) ) |
| 6 |
|
vex |
⊢ 𝑥 ∈ V |
| 7 |
6
|
rankuni2 |
⊢ ( rank ‘ ∪ 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( rank ‘ 𝑧 ) |
| 8 |
|
fvex |
⊢ ( rank ‘ 𝑧 ) ∈ V |
| 9 |
8
|
dfiun2 |
⊢ ∪ 𝑧 ∈ 𝑥 ( rank ‘ 𝑧 ) = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) } |
| 10 |
7 9
|
eqtri |
⊢ ( rank ‘ ∪ 𝑥 ) = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) } |
| 11 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 12 |
6
|
rankel |
⊢ ( 𝑧 ∈ 𝑥 → ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ) |
| 13 |
12
|
anim1i |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( rank ‘ 𝑧 ) ) → ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 14 |
13
|
eximi |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( rank ‘ 𝑧 ) ) → ∃ 𝑧 ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 15 |
|
19.42v |
⊢ ( ∃ 𝑧 ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ↔ ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 16 |
|
eleq1 |
⊢ ( 𝑦 = ( rank ‘ 𝑧 ) → ( 𝑦 ∈ ( rank ‘ 𝑥 ) ↔ ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ) ) |
| 17 |
16
|
pm5.32ri |
⊢ ( ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ↔ ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 18 |
17
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ↔ ∃ 𝑧 ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 19 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) → 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 20 |
|
rankon |
⊢ ( rank ‘ 𝑥 ) ∈ On |
| 21 |
20
|
oneli |
⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → 𝑦 ∈ On ) |
| 22 |
|
r1fnon |
⊢ 𝑅1 Fn On |
| 23 |
|
fndm |
⊢ ( 𝑅1 Fn On → dom 𝑅1 = On ) |
| 24 |
22 23
|
ax-mp |
⊢ dom 𝑅1 = On |
| 25 |
21 24
|
eleqtrrdi |
⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → 𝑦 ∈ dom 𝑅1 ) |
| 26 |
|
rankr1id |
⊢ ( 𝑦 ∈ dom 𝑅1 ↔ ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) = 𝑦 ) |
| 27 |
25 26
|
sylib |
⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) = 𝑦 ) |
| 28 |
27
|
eqcomd |
⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → 𝑦 = ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 29 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝑦 ) ∈ V |
| 30 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑅1 ‘ 𝑦 ) → ( rank ‘ 𝑧 ) = ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 31 |
30
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑅1 ‘ 𝑦 ) → ( 𝑦 = ( rank ‘ 𝑧 ) ↔ 𝑦 = ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 32 |
29 31
|
spcev |
⊢ ( 𝑦 = ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) |
| 33 |
28 32
|
syl |
⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) |
| 34 |
33
|
ancli |
⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 35 |
19 34
|
impbii |
⊢ ( ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) ↔ 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 36 |
15 18 35
|
3bitr3i |
⊢ ( ∃ 𝑧 ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ↔ 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 37 |
14 36
|
sylib |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( rank ‘ 𝑧 ) ) → 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 38 |
11 37
|
sylbi |
⊢ ( ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) → 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 39 |
38
|
abssi |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) } ⊆ ( rank ‘ 𝑥 ) |
| 40 |
39
|
unissi |
⊢ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) } ⊆ ∪ ( rank ‘ 𝑥 ) |
| 41 |
10 40
|
eqsstri |
⊢ ( rank ‘ ∪ 𝑥 ) ⊆ ∪ ( rank ‘ 𝑥 ) |
| 42 |
|
pwuni |
⊢ 𝑥 ⊆ 𝒫 ∪ 𝑥 |
| 43 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
| 44 |
43
|
pwex |
⊢ 𝒫 ∪ 𝑥 ∈ V |
| 45 |
44
|
rankss |
⊢ ( 𝑥 ⊆ 𝒫 ∪ 𝑥 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝒫 ∪ 𝑥 ) ) |
| 46 |
42 45
|
ax-mp |
⊢ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝒫 ∪ 𝑥 ) |
| 47 |
43
|
rankpw |
⊢ ( rank ‘ 𝒫 ∪ 𝑥 ) = suc ( rank ‘ ∪ 𝑥 ) |
| 48 |
46 47
|
sseqtri |
⊢ ( rank ‘ 𝑥 ) ⊆ suc ( rank ‘ ∪ 𝑥 ) |
| 49 |
48
|
unissi |
⊢ ∪ ( rank ‘ 𝑥 ) ⊆ ∪ suc ( rank ‘ ∪ 𝑥 ) |
| 50 |
|
rankon |
⊢ ( rank ‘ ∪ 𝑥 ) ∈ On |
| 51 |
50
|
onunisuci |
⊢ ∪ suc ( rank ‘ ∪ 𝑥 ) = ( rank ‘ ∪ 𝑥 ) |
| 52 |
49 51
|
sseqtri |
⊢ ∪ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝑥 ) |
| 53 |
41 52
|
eqssi |
⊢ ( rank ‘ ∪ 𝑥 ) = ∪ ( rank ‘ 𝑥 ) |
| 54 |
5 53
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) ) |
| 55 |
|
uniexb |
⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) |
| 56 |
|
fvprc |
⊢ ( ¬ ∪ 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∅ ) |
| 57 |
55 56
|
sylnbi |
⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∅ ) |
| 58 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 59 |
57 58
|
eqtr4di |
⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∪ ∅ ) |
| 60 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ 𝐴 ) = ∅ ) |
| 61 |
60
|
unieqd |
⊢ ( ¬ 𝐴 ∈ V → ∪ ( rank ‘ 𝐴 ) = ∪ ∅ ) |
| 62 |
59 61
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) ) |
| 63 |
54 62
|
pm2.61i |
⊢ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) |