| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) |
| 2 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V |
| 3 |
2
|
pwid |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) |
| 4 |
|
r1sucg |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
| 5 |
3 4
|
eleqtrrid |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
| 6 |
|
r1elwf |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 8 |
|
rankr1bg |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) ) |
| 9 |
7 8
|
mpancom |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) ) |
| 10 |
1 9
|
mpbii |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) |
| 11 |
|
rankonid |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) |
| 12 |
11
|
biimpi |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ 𝐴 ) = 𝐴 ) |
| 13 |
|
onssr1 |
⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 14 |
|
rankssb |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 15 |
7 13 14
|
sylc |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 16 |
12 15
|
eqsstrrd |
⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 17 |
10 16
|
eqssd |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |
| 18 |
|
id |
⊢ ( ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |
| 19 |
|
rankdmr1 |
⊢ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ dom 𝑅1 |
| 20 |
18 19
|
eqeltrrdi |
⊢ ( ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 → 𝐴 ∈ dom 𝑅1 ) |
| 21 |
17 20
|
impbii |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |