| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hilablo |
|- +h e. AbelOp |
| 2 |
|
ax-hfvadd |
|- +h : ( ~H X. ~H ) --> ~H |
| 3 |
2
|
fdmi |
|- dom +h = ( ~H X. ~H ) |
| 4 |
|
ax-hfvmul |
|- .h : ( CC X. ~H ) --> ~H |
| 5 |
|
ax-hvmulid |
|- ( x e. ~H -> ( 1 .h x ) = x ) |
| 6 |
|
ax-hvdistr1 |
|- ( ( y e. CC /\ x e. ~H /\ z e. ~H ) -> ( y .h ( x +h z ) ) = ( ( y .h x ) +h ( y .h z ) ) ) |
| 7 |
|
ax-hvdistr2 |
|- ( ( y e. CC /\ z e. CC /\ x e. ~H ) -> ( ( y + z ) .h x ) = ( ( y .h x ) +h ( z .h x ) ) ) |
| 8 |
|
ax-hvmulass |
|- ( ( y e. CC /\ z e. CC /\ x e. ~H ) -> ( ( y x. z ) .h x ) = ( y .h ( z .h x ) ) ) |
| 9 |
|
eqid |
|- <. +h , .h >. = <. +h , .h >. |
| 10 |
1 3 4 5 6 7 8 9
|
isvciOLD |
|- <. +h , .h >. e. CVecOLD |