Metamath Proof Explorer


Theorem hilvc

Description: Hilbert space is a complex vector space. Vector addition is +h , and scalar product is .h . (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilvc +CVecOLD

Proof

Step Hyp Ref Expression
1 hilablo +AbelOp
2 ax-hfvadd +:×
3 2 fdmi dom+=×
4 ax-hfvmul :×
5 ax-hvmulid x1x=x
6 ax-hvdistr1 yxzyx+z=yx+yz
7 ax-hvdistr2 yzxy+zx=yx+zx
8 ax-hvmulass yzxyzx=yzx
9 eqid +=+
10 1 3 4 5 6 7 8 9 isvciOLD +CVecOLD