Metamath Proof Explorer


Theorem hilablo

Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hilablo +AbelOp

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 ax-hfvadd +:×
3 ax-hvass xyzx+y+z=x+y+z
4 ax-hv0cl 0
5 hvaddlid x0+x=x
6 neg1cn 1
7 hvmulcl 1x-1x
8 6 7 mpan x-1x
9 ax-hvcom -1xx-1x+x=x+-1x
10 8 9 mpancom x-1x+x=x+-1x
11 hvnegid xx+-1x=0
12 10 11 eqtrd x-1x+x=0
13 1 2 3 4 5 8 12 isgrpoi +GrpOp
14 2 fdmi dom+=×
15 ax-hvcom xyx+y=y+x
16 13 14 15 isabloi +AbelOp