Metamath Proof Explorer


Theorem isgrpoi

Description: Properties that determine a group operation. Read N as N ( x ) . (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses isgrpoi.1 X V
isgrpoi.2 G : X × X X
isgrpoi.3 x X y X z X x G y G z = x G y G z
isgrpoi.4 U X
isgrpoi.5 x X U G x = x
isgrpoi.6 x X N X
isgrpoi.7 x X N G x = U
Assertion isgrpoi G GrpOp

Proof

Step Hyp Ref Expression
1 isgrpoi.1 X V
2 isgrpoi.2 G : X × X X
3 isgrpoi.3 x X y X z X x G y G z = x G y G z
4 isgrpoi.4 U X
5 isgrpoi.5 x X U G x = x
6 isgrpoi.6 x X N X
7 isgrpoi.7 x X N G x = U
8 3 rgen3 x X y X z X x G y G z = x G y G z
9 oveq1 y = N y G x = N G x
10 9 eqeq1d y = N y G x = U N G x = U
11 10 rspcev N X N G x = U y X y G x = U
12 6 7 11 syl2anc x X y X y G x = U
13 5 12 jca x X U G x = x y X y G x = U
14 13 rgen x X U G x = x y X y G x = U
15 oveq1 u = U u G x = U G x
16 15 eqeq1d u = U u G x = x U G x = x
17 eqeq2 u = U y G x = u y G x = U
18 17 rexbidv u = U y X y G x = u y X y G x = U
19 16 18 anbi12d u = U u G x = x y X y G x = u U G x = x y X y G x = U
20 19 ralbidv u = U x X u G x = x y X y G x = u x X U G x = x y X y G x = U
21 20 rspcev U X x X U G x = x y X y G x = U u X x X u G x = x y X y G x = u
22 4 14 21 mp2an u X x X u G x = x y X y G x = u
23 1 1 xpex X × X V
24 fex G : X × X X X × X V G V
25 2 23 24 mp2an G V
26 5 eqcomd x X x = U G x
27 rspceov U X x X x = U G x y X z X x = y G z
28 4 27 mp3an1 x X x = U G x y X z X x = y G z
29 26 28 mpdan x X y X z X x = y G z
30 29 rgen x X y X z X x = y G z
31 foov G : X × X onto X G : X × X X x X y X z X x = y G z
32 2 30 31 mpbir2an G : X × X onto X
33 forn G : X × X onto X ran G = X
34 32 33 ax-mp ran G = X
35 34 eqcomi X = ran G
36 35 isgrpo G V G GrpOp G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
37 25 36 ax-mp G GrpOp G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
38 2 8 22 37 mpbir3an G GrpOp